Metamath Proof Explorer


Theorem pmeasadd

Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Hypotheses caraext.1 φ P : R 0 +∞
caraext.2 φ P = 0
caraext.3 φ x ω x R Disj y x y P x = * y x P y
pmeassubadd.q Q = s 𝒫 𝒫 O | s x s y s x y s x y s
pmeassubadd.1 φ R Q
pmeassubadd.2 φ A ω
pmeassubadd.3 φ k A B R
pmeasadd.4 φ Disj k A B
Assertion pmeasadd φ P k A B = * k A P B

Proof

Step Hyp Ref Expression
1 caraext.1 φ P : R 0 +∞
2 caraext.2 φ P = 0
3 caraext.3 φ x ω x R Disj y x y P x = * y x P y
4 pmeassubadd.q Q = s 𝒫 𝒫 O | s x s y s x y s x y s
5 pmeassubadd.1 φ R Q
6 pmeassubadd.2 φ A ω
7 pmeassubadd.3 φ k A B R
8 pmeasadd.4 φ Disj k A B
9 7 ralrimiva φ k A B R
10 dfiun3g k A B R k A B = ran k A B
11 9 10 syl φ k A B = ran k A B
12 11 fveq2d φ P k A B = P ran k A B
13 mptct A ω k A B ω
14 rnct k A B ω ran k A B ω
15 6 13 14 3syl φ ran k A B ω
16 eqid k A B = k A B
17 16 rnmptss k A B R ran k A B R
18 9 17 syl φ ran k A B R
19 disjrnmpt Disj k A B Disj y ran k A B y
20 8 19 syl φ Disj y ran k A B y
21 15 18 20 3jca φ ran k A B ω ran k A B R Disj y ran k A B y
22 21 ancli φ φ ran k A B ω ran k A B R Disj y ran k A B y
23 ctex A ω A V
24 mptexg A V k A B V
25 6 23 24 3syl φ k A B V
26 rnexg k A B V ran k A B V
27 breq1 x = ran k A B x ω ran k A B ω
28 sseq1 x = ran k A B x R ran k A B R
29 disjeq1 x = ran k A B Disj y x y Disj y ran k A B y
30 27 28 29 3anbi123d x = ran k A B x ω x R Disj y x y ran k A B ω ran k A B R Disj y ran k A B y
31 30 anbi2d x = ran k A B φ x ω x R Disj y x y φ ran k A B ω ran k A B R Disj y ran k A B y
32 unieq x = ran k A B x = ran k A B
33 32 fveq2d x = ran k A B P x = P ran k A B
34 esumeq1 x = ran k A B * y x P y = * y ran k A B P y
35 33 34 eqeq12d x = ran k A B P x = * y x P y P ran k A B = * y ran k A B P y
36 31 35 imbi12d x = ran k A B φ x ω x R Disj y x y P x = * y x P y φ ran k A B ω ran k A B R Disj y ran k A B y P ran k A B = * y ran k A B P y
37 36 3 vtoclg ran k A B V φ ran k A B ω ran k A B R Disj y ran k A B y P ran k A B = * y ran k A B P y
38 25 26 37 3syl φ φ ran k A B ω ran k A B R Disj y ran k A B y P ran k A B = * y ran k A B P y
39 22 38 mpd φ P ran k A B = * y ran k A B P y
40 fveq2 y = B P y = P B
41 6 23 syl φ A V
42 1 adantr φ k A P : R 0 +∞
43 42 7 ffvelrnd φ k A P B 0 +∞
44 fveq2 B = P B = P
45 44 adantl φ k A B = P B = P
46 2 ad2antrr φ k A B = P = 0
47 45 46 eqtrd φ k A B = P B = 0
48 40 41 43 7 47 8 esumrnmpt2 φ * y ran k A B P y = * k A P B
49 12 39 48 3eqtrd φ P k A B = * k A P B