Step |
Hyp |
Ref |
Expression |
1 |
|
caraext.1 |
|- ( ph -> P : R --> ( 0 [,] +oo ) ) |
2 |
|
caraext.2 |
|- ( ph -> ( P ` (/) ) = 0 ) |
3 |
|
caraext.3 |
|- ( ( ph /\ ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) ) -> ( P ` U. x ) = sum* y e. x ( P ` y ) ) |
4 |
|
pmeassubadd.q |
|- Q = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s A. y e. s ( ( x u. y ) e. s /\ ( x \ y ) e. s ) ) } |
5 |
|
pmeassubadd.1 |
|- ( ph -> R e. Q ) |
6 |
|
pmeassubadd.2 |
|- ( ph -> A ~<_ _om ) |
7 |
|
pmeassubadd.3 |
|- ( ( ph /\ k e. A ) -> B e. R ) |
8 |
|
pmeasadd.4 |
|- ( ph -> Disj_ k e. A B ) |
9 |
7
|
ralrimiva |
|- ( ph -> A. k e. A B e. R ) |
10 |
|
dfiun3g |
|- ( A. k e. A B e. R -> U_ k e. A B = U. ran ( k e. A |-> B ) ) |
11 |
9 10
|
syl |
|- ( ph -> U_ k e. A B = U. ran ( k e. A |-> B ) ) |
12 |
11
|
fveq2d |
|- ( ph -> ( P ` U_ k e. A B ) = ( P ` U. ran ( k e. A |-> B ) ) ) |
13 |
|
mptct |
|- ( A ~<_ _om -> ( k e. A |-> B ) ~<_ _om ) |
14 |
|
rnct |
|- ( ( k e. A |-> B ) ~<_ _om -> ran ( k e. A |-> B ) ~<_ _om ) |
15 |
6 13 14
|
3syl |
|- ( ph -> ran ( k e. A |-> B ) ~<_ _om ) |
16 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
17 |
16
|
rnmptss |
|- ( A. k e. A B e. R -> ran ( k e. A |-> B ) C_ R ) |
18 |
9 17
|
syl |
|- ( ph -> ran ( k e. A |-> B ) C_ R ) |
19 |
|
disjrnmpt |
|- ( Disj_ k e. A B -> Disj_ y e. ran ( k e. A |-> B ) y ) |
20 |
8 19
|
syl |
|- ( ph -> Disj_ y e. ran ( k e. A |-> B ) y ) |
21 |
15 18 20
|
3jca |
|- ( ph -> ( ran ( k e. A |-> B ) ~<_ _om /\ ran ( k e. A |-> B ) C_ R /\ Disj_ y e. ran ( k e. A |-> B ) y ) ) |
22 |
21
|
ancli |
|- ( ph -> ( ph /\ ( ran ( k e. A |-> B ) ~<_ _om /\ ran ( k e. A |-> B ) C_ R /\ Disj_ y e. ran ( k e. A |-> B ) y ) ) ) |
23 |
|
ctex |
|- ( A ~<_ _om -> A e. _V ) |
24 |
|
mptexg |
|- ( A e. _V -> ( k e. A |-> B ) e. _V ) |
25 |
6 23 24
|
3syl |
|- ( ph -> ( k e. A |-> B ) e. _V ) |
26 |
|
rnexg |
|- ( ( k e. A |-> B ) e. _V -> ran ( k e. A |-> B ) e. _V ) |
27 |
|
breq1 |
|- ( x = ran ( k e. A |-> B ) -> ( x ~<_ _om <-> ran ( k e. A |-> B ) ~<_ _om ) ) |
28 |
|
sseq1 |
|- ( x = ran ( k e. A |-> B ) -> ( x C_ R <-> ran ( k e. A |-> B ) C_ R ) ) |
29 |
|
disjeq1 |
|- ( x = ran ( k e. A |-> B ) -> ( Disj_ y e. x y <-> Disj_ y e. ran ( k e. A |-> B ) y ) ) |
30 |
27 28 29
|
3anbi123d |
|- ( x = ran ( k e. A |-> B ) -> ( ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) <-> ( ran ( k e. A |-> B ) ~<_ _om /\ ran ( k e. A |-> B ) C_ R /\ Disj_ y e. ran ( k e. A |-> B ) y ) ) ) |
31 |
30
|
anbi2d |
|- ( x = ran ( k e. A |-> B ) -> ( ( ph /\ ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) ) <-> ( ph /\ ( ran ( k e. A |-> B ) ~<_ _om /\ ran ( k e. A |-> B ) C_ R /\ Disj_ y e. ran ( k e. A |-> B ) y ) ) ) ) |
32 |
|
unieq |
|- ( x = ran ( k e. A |-> B ) -> U. x = U. ran ( k e. A |-> B ) ) |
33 |
32
|
fveq2d |
|- ( x = ran ( k e. A |-> B ) -> ( P ` U. x ) = ( P ` U. ran ( k e. A |-> B ) ) ) |
34 |
|
esumeq1 |
|- ( x = ran ( k e. A |-> B ) -> sum* y e. x ( P ` y ) = sum* y e. ran ( k e. A |-> B ) ( P ` y ) ) |
35 |
33 34
|
eqeq12d |
|- ( x = ran ( k e. A |-> B ) -> ( ( P ` U. x ) = sum* y e. x ( P ` y ) <-> ( P ` U. ran ( k e. A |-> B ) ) = sum* y e. ran ( k e. A |-> B ) ( P ` y ) ) ) |
36 |
31 35
|
imbi12d |
|- ( x = ran ( k e. A |-> B ) -> ( ( ( ph /\ ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) ) -> ( P ` U. x ) = sum* y e. x ( P ` y ) ) <-> ( ( ph /\ ( ran ( k e. A |-> B ) ~<_ _om /\ ran ( k e. A |-> B ) C_ R /\ Disj_ y e. ran ( k e. A |-> B ) y ) ) -> ( P ` U. ran ( k e. A |-> B ) ) = sum* y e. ran ( k e. A |-> B ) ( P ` y ) ) ) ) |
37 |
36 3
|
vtoclg |
|- ( ran ( k e. A |-> B ) e. _V -> ( ( ph /\ ( ran ( k e. A |-> B ) ~<_ _om /\ ran ( k e. A |-> B ) C_ R /\ Disj_ y e. ran ( k e. A |-> B ) y ) ) -> ( P ` U. ran ( k e. A |-> B ) ) = sum* y e. ran ( k e. A |-> B ) ( P ` y ) ) ) |
38 |
25 26 37
|
3syl |
|- ( ph -> ( ( ph /\ ( ran ( k e. A |-> B ) ~<_ _om /\ ran ( k e. A |-> B ) C_ R /\ Disj_ y e. ran ( k e. A |-> B ) y ) ) -> ( P ` U. ran ( k e. A |-> B ) ) = sum* y e. ran ( k e. A |-> B ) ( P ` y ) ) ) |
39 |
22 38
|
mpd |
|- ( ph -> ( P ` U. ran ( k e. A |-> B ) ) = sum* y e. ran ( k e. A |-> B ) ( P ` y ) ) |
40 |
|
fveq2 |
|- ( y = B -> ( P ` y ) = ( P ` B ) ) |
41 |
6 23
|
syl |
|- ( ph -> A e. _V ) |
42 |
1
|
adantr |
|- ( ( ph /\ k e. A ) -> P : R --> ( 0 [,] +oo ) ) |
43 |
42 7
|
ffvelrnd |
|- ( ( ph /\ k e. A ) -> ( P ` B ) e. ( 0 [,] +oo ) ) |
44 |
|
fveq2 |
|- ( B = (/) -> ( P ` B ) = ( P ` (/) ) ) |
45 |
44
|
adantl |
|- ( ( ( ph /\ k e. A ) /\ B = (/) ) -> ( P ` B ) = ( P ` (/) ) ) |
46 |
2
|
ad2antrr |
|- ( ( ( ph /\ k e. A ) /\ B = (/) ) -> ( P ` (/) ) = 0 ) |
47 |
45 46
|
eqtrd |
|- ( ( ( ph /\ k e. A ) /\ B = (/) ) -> ( P ` B ) = 0 ) |
48 |
40 41 43 7 47 8
|
esumrnmpt2 |
|- ( ph -> sum* y e. ran ( k e. A |-> B ) ( P ` y ) = sum* k e. A ( P ` B ) ) |
49 |
12 39 48
|
3eqtrd |
|- ( ph -> ( P ` U_ k e. A B ) = sum* k e. A ( P ` B ) ) |