Step |
Hyp |
Ref |
Expression |
1 |
|
caraext.1 |
⊢ ( 𝜑 → 𝑃 : 𝑅 ⟶ ( 0 [,] +∞ ) ) |
2 |
|
caraext.2 |
⊢ ( 𝜑 → ( 𝑃 ‘ ∅ ) = 0 ) |
3 |
|
caraext.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( 𝑃 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑃 ‘ 𝑦 ) ) |
4 |
|
pmeassubadd.q |
⊢ 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ) } |
5 |
|
pmeassubadd.1 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑄 ) |
6 |
|
pmeassubadd.2 |
⊢ ( 𝜑 → 𝐴 ≼ ω ) |
7 |
|
pmeassubadd.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑅 ) |
8 |
|
pmeasadd.4 |
⊢ ( 𝜑 → Disj 𝑘 ∈ 𝐴 𝐵 ) |
9 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 ) |
10 |
|
dfiun3g |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( 𝑃 ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = ( 𝑃 ‘ ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
13 |
|
mptct |
⊢ ( 𝐴 ≼ ω → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
14 |
|
rnct |
⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω → ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
15 |
6 13 14
|
3syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
16 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
17 |
16
|
rnmptss |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑅 ) |
18 |
9 17
|
syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑅 ) |
19 |
|
disjrnmpt |
⊢ ( Disj 𝑘 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ) |
20 |
8 19
|
syl |
⊢ ( 𝜑 → Disj 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ) |
21 |
15 18 20
|
3jca |
⊢ ( 𝜑 → ( ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ∧ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ) ) |
22 |
21
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ ( ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ∧ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ) ) ) |
23 |
|
ctex |
⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) |
24 |
|
mptexg |
⊢ ( 𝐴 ∈ V → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
25 |
6 23 24
|
3syl |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
26 |
|
rnexg |
⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V → ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
27 |
|
breq1 |
⊢ ( 𝑥 = ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑥 ≼ ω ↔ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) ) |
28 |
|
sseq1 |
⊢ ( 𝑥 = ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑥 ⊆ 𝑅 ↔ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑅 ) ) |
29 |
|
disjeq1 |
⊢ ( 𝑥 = ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) → ( Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ) ) |
30 |
27 28 29
|
3anbi123d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) → ( ( 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ↔ ( ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ∧ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ) ) ) |
31 |
30
|
anbi2d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) → ( ( 𝜑 ∧ ( 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ↔ ( 𝜑 ∧ ( ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ∧ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ) ) ) ) |
32 |
|
unieq |
⊢ ( 𝑥 = ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) → ∪ 𝑥 = ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
33 |
32
|
fveq2d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑃 ‘ ∪ 𝑥 ) = ( 𝑃 ‘ ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
34 |
|
esumeq1 |
⊢ ( 𝑥 = ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) → Σ* 𝑦 ∈ 𝑥 ( 𝑃 ‘ 𝑦 ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ( 𝑃 ‘ 𝑦 ) ) |
35 |
33 34
|
eqeq12d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) → ( ( 𝑃 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑃 ‘ 𝑦 ) ↔ ( 𝑃 ‘ ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ( 𝑃 ‘ 𝑦 ) ) ) |
36 |
31 35
|
imbi12d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( 𝑃 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑃 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ ( ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ∧ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ) ) → ( 𝑃 ‘ ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ( 𝑃 ‘ 𝑦 ) ) ) ) |
37 |
36 3
|
vtoclg |
⊢ ( ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V → ( ( 𝜑 ∧ ( ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ∧ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ) ) → ( 𝑃 ‘ ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ( 𝑃 ‘ 𝑦 ) ) ) |
38 |
25 26 37
|
3syl |
⊢ ( 𝜑 → ( ( 𝜑 ∧ ( ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ∧ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ) ) → ( 𝑃 ‘ ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ( 𝑃 ‘ 𝑦 ) ) ) |
39 |
22 38
|
mpd |
⊢ ( 𝜑 → ( 𝑃 ‘ ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ( 𝑃 ‘ 𝑦 ) ) |
40 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑃 ‘ 𝑦 ) = ( 𝑃 ‘ 𝐵 ) ) |
41 |
6 23
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
42 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑃 : 𝑅 ⟶ ( 0 [,] +∞ ) ) |
43 |
42 7
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
44 |
|
fveq2 |
⊢ ( 𝐵 = ∅ → ( 𝑃 ‘ 𝐵 ) = ( 𝑃 ‘ ∅ ) ) |
45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → ( 𝑃 ‘ 𝐵 ) = ( 𝑃 ‘ ∅ ) ) |
46 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → ( 𝑃 ‘ ∅ ) = 0 ) |
47 |
45 46
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → ( 𝑃 ‘ 𝐵 ) = 0 ) |
48 |
40 41 43 7 47 8
|
esumrnmpt2 |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ( 𝑃 ‘ 𝑦 ) = Σ* 𝑘 ∈ 𝐴 ( 𝑃 ‘ 𝐵 ) ) |
49 |
12 39 48
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑃 ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = Σ* 𝑘 ∈ 𝐴 ( 𝑃 ‘ 𝐵 ) ) |