Metamath Proof Explorer


Theorem pmeasadd

Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Hypotheses caraext.1 ( 𝜑𝑃 : 𝑅 ⟶ ( 0 [,] +∞ ) )
caraext.2 ( 𝜑 → ( 𝑃 ‘ ∅ ) = 0 )
caraext.3 ( ( 𝜑 ∧ ( 𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦 ) ) → ( 𝑃 𝑥 ) = Σ* 𝑦𝑥 ( 𝑃𝑦 ) )
pmeassubadd.q 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ) }
pmeassubadd.1 ( 𝜑𝑅𝑄 )
pmeassubadd.2 ( 𝜑𝐴 ≼ ω )
pmeassubadd.3 ( ( 𝜑𝑘𝐴 ) → 𝐵𝑅 )
pmeasadd.4 ( 𝜑Disj 𝑘𝐴 𝐵 )
Assertion pmeasadd ( 𝜑 → ( 𝑃 𝑘𝐴 𝐵 ) = Σ* 𝑘𝐴 ( 𝑃𝐵 ) )

Proof

Step Hyp Ref Expression
1 caraext.1 ( 𝜑𝑃 : 𝑅 ⟶ ( 0 [,] +∞ ) )
2 caraext.2 ( 𝜑 → ( 𝑃 ‘ ∅ ) = 0 )
3 caraext.3 ( ( 𝜑 ∧ ( 𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦 ) ) → ( 𝑃 𝑥 ) = Σ* 𝑦𝑥 ( 𝑃𝑦 ) )
4 pmeassubadd.q 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ) }
5 pmeassubadd.1 ( 𝜑𝑅𝑄 )
6 pmeassubadd.2 ( 𝜑𝐴 ≼ ω )
7 pmeassubadd.3 ( ( 𝜑𝑘𝐴 ) → 𝐵𝑅 )
8 pmeasadd.4 ( 𝜑Disj 𝑘𝐴 𝐵 )
9 7 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝐵𝑅 )
10 dfiun3g ( ∀ 𝑘𝐴 𝐵𝑅 𝑘𝐴 𝐵 = ran ( 𝑘𝐴𝐵 ) )
11 9 10 syl ( 𝜑 𝑘𝐴 𝐵 = ran ( 𝑘𝐴𝐵 ) )
12 11 fveq2d ( 𝜑 → ( 𝑃 𝑘𝐴 𝐵 ) = ( 𝑃 ran ( 𝑘𝐴𝐵 ) ) )
13 mptct ( 𝐴 ≼ ω → ( 𝑘𝐴𝐵 ) ≼ ω )
14 rnct ( ( 𝑘𝐴𝐵 ) ≼ ω → ran ( 𝑘𝐴𝐵 ) ≼ ω )
15 6 13 14 3syl ( 𝜑 → ran ( 𝑘𝐴𝐵 ) ≼ ω )
16 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
17 16 rnmptss ( ∀ 𝑘𝐴 𝐵𝑅 → ran ( 𝑘𝐴𝐵 ) ⊆ 𝑅 )
18 9 17 syl ( 𝜑 → ran ( 𝑘𝐴𝐵 ) ⊆ 𝑅 )
19 disjrnmpt ( Disj 𝑘𝐴 𝐵Disj 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) 𝑦 )
20 8 19 syl ( 𝜑Disj 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) 𝑦 )
21 15 18 20 3jca ( 𝜑 → ( ran ( 𝑘𝐴𝐵 ) ≼ ω ∧ ran ( 𝑘𝐴𝐵 ) ⊆ 𝑅Disj 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) 𝑦 ) )
22 21 ancli ( 𝜑 → ( 𝜑 ∧ ( ran ( 𝑘𝐴𝐵 ) ≼ ω ∧ ran ( 𝑘𝐴𝐵 ) ⊆ 𝑅Disj 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) 𝑦 ) ) )
23 ctex ( 𝐴 ≼ ω → 𝐴 ∈ V )
24 mptexg ( 𝐴 ∈ V → ( 𝑘𝐴𝐵 ) ∈ V )
25 6 23 24 3syl ( 𝜑 → ( 𝑘𝐴𝐵 ) ∈ V )
26 rnexg ( ( 𝑘𝐴𝐵 ) ∈ V → ran ( 𝑘𝐴𝐵 ) ∈ V )
27 breq1 ( 𝑥 = ran ( 𝑘𝐴𝐵 ) → ( 𝑥 ≼ ω ↔ ran ( 𝑘𝐴𝐵 ) ≼ ω ) )
28 sseq1 ( 𝑥 = ran ( 𝑘𝐴𝐵 ) → ( 𝑥𝑅 ↔ ran ( 𝑘𝐴𝐵 ) ⊆ 𝑅 ) )
29 disjeq1 ( 𝑥 = ran ( 𝑘𝐴𝐵 ) → ( Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) 𝑦 ) )
30 27 28 29 3anbi123d ( 𝑥 = ran ( 𝑘𝐴𝐵 ) → ( ( 𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦 ) ↔ ( ran ( 𝑘𝐴𝐵 ) ≼ ω ∧ ran ( 𝑘𝐴𝐵 ) ⊆ 𝑅Disj 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) 𝑦 ) ) )
31 30 anbi2d ( 𝑥 = ran ( 𝑘𝐴𝐵 ) → ( ( 𝜑 ∧ ( 𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦 ) ) ↔ ( 𝜑 ∧ ( ran ( 𝑘𝐴𝐵 ) ≼ ω ∧ ran ( 𝑘𝐴𝐵 ) ⊆ 𝑅Disj 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) 𝑦 ) ) ) )
32 unieq ( 𝑥 = ran ( 𝑘𝐴𝐵 ) → 𝑥 = ran ( 𝑘𝐴𝐵 ) )
33 32 fveq2d ( 𝑥 = ran ( 𝑘𝐴𝐵 ) → ( 𝑃 𝑥 ) = ( 𝑃 ran ( 𝑘𝐴𝐵 ) ) )
34 esumeq1 ( 𝑥 = ran ( 𝑘𝐴𝐵 ) → Σ* 𝑦𝑥 ( 𝑃𝑦 ) = Σ* 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) ( 𝑃𝑦 ) )
35 33 34 eqeq12d ( 𝑥 = ran ( 𝑘𝐴𝐵 ) → ( ( 𝑃 𝑥 ) = Σ* 𝑦𝑥 ( 𝑃𝑦 ) ↔ ( 𝑃 ran ( 𝑘𝐴𝐵 ) ) = Σ* 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) ( 𝑃𝑦 ) ) )
36 31 35 imbi12d ( 𝑥 = ran ( 𝑘𝐴𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦 ) ) → ( 𝑃 𝑥 ) = Σ* 𝑦𝑥 ( 𝑃𝑦 ) ) ↔ ( ( 𝜑 ∧ ( ran ( 𝑘𝐴𝐵 ) ≼ ω ∧ ran ( 𝑘𝐴𝐵 ) ⊆ 𝑅Disj 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) 𝑦 ) ) → ( 𝑃 ran ( 𝑘𝐴𝐵 ) ) = Σ* 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) ( 𝑃𝑦 ) ) ) )
37 36 3 vtoclg ( ran ( 𝑘𝐴𝐵 ) ∈ V → ( ( 𝜑 ∧ ( ran ( 𝑘𝐴𝐵 ) ≼ ω ∧ ran ( 𝑘𝐴𝐵 ) ⊆ 𝑅Disj 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) 𝑦 ) ) → ( 𝑃 ran ( 𝑘𝐴𝐵 ) ) = Σ* 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) ( 𝑃𝑦 ) ) )
38 25 26 37 3syl ( 𝜑 → ( ( 𝜑 ∧ ( ran ( 𝑘𝐴𝐵 ) ≼ ω ∧ ran ( 𝑘𝐴𝐵 ) ⊆ 𝑅Disj 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) 𝑦 ) ) → ( 𝑃 ran ( 𝑘𝐴𝐵 ) ) = Σ* 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) ( 𝑃𝑦 ) ) )
39 22 38 mpd ( 𝜑 → ( 𝑃 ran ( 𝑘𝐴𝐵 ) ) = Σ* 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) ( 𝑃𝑦 ) )
40 fveq2 ( 𝑦 = 𝐵 → ( 𝑃𝑦 ) = ( 𝑃𝐵 ) )
41 6 23 syl ( 𝜑𝐴 ∈ V )
42 1 adantr ( ( 𝜑𝑘𝐴 ) → 𝑃 : 𝑅 ⟶ ( 0 [,] +∞ ) )
43 42 7 ffvelrnd ( ( 𝜑𝑘𝐴 ) → ( 𝑃𝐵 ) ∈ ( 0 [,] +∞ ) )
44 fveq2 ( 𝐵 = ∅ → ( 𝑃𝐵 ) = ( 𝑃 ‘ ∅ ) )
45 44 adantl ( ( ( 𝜑𝑘𝐴 ) ∧ 𝐵 = ∅ ) → ( 𝑃𝐵 ) = ( 𝑃 ‘ ∅ ) )
46 2 ad2antrr ( ( ( 𝜑𝑘𝐴 ) ∧ 𝐵 = ∅ ) → ( 𝑃 ‘ ∅ ) = 0 )
47 45 46 eqtrd ( ( ( 𝜑𝑘𝐴 ) ∧ 𝐵 = ∅ ) → ( 𝑃𝐵 ) = 0 )
48 40 41 43 7 47 8 esumrnmpt2 ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘𝐴𝐵 ) ( 𝑃𝑦 ) = Σ* 𝑘𝐴 ( 𝑃𝐵 ) )
49 12 39 48 3eqtrd ( 𝜑 → ( 𝑃 𝑘𝐴 𝐵 ) = Σ* 𝑘𝐴 ( 𝑃𝐵 ) )