| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caraext.1 |
|- ( ph -> P : R --> ( 0 [,] +oo ) ) |
| 2 |
|
caraext.2 |
|- ( ph -> ( P ` (/) ) = 0 ) |
| 3 |
|
caraext.3 |
|- ( ( ph /\ ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) ) -> ( P ` U. x ) = sum* y e. x ( P ` y ) ) |
| 4 |
|
pmeasmono.1 |
|- ( ph -> A e. R ) |
| 5 |
|
pmeasmono.2 |
|- ( ph -> B e. R ) |
| 6 |
|
pmeasmono.3 |
|- ( ph -> ( B \ A ) e. R ) |
| 7 |
|
pmeasmono.4 |
|- ( ph -> A C_ B ) |
| 8 |
|
eqimss |
|- ( A = ( B \ A ) -> A C_ ( B \ A ) ) |
| 9 |
|
ssdifeq0 |
|- ( A C_ ( B \ A ) <-> A = (/) ) |
| 10 |
8 9
|
sylib |
|- ( A = ( B \ A ) -> A = (/) ) |
| 11 |
10
|
fveq2d |
|- ( A = ( B \ A ) -> ( P ` A ) = ( P ` (/) ) ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ A = ( B \ A ) ) -> ( P ` A ) = ( P ` (/) ) ) |
| 13 |
2
|
adantr |
|- ( ( ph /\ A = ( B \ A ) ) -> ( P ` (/) ) = 0 ) |
| 14 |
12 13
|
eqtrd |
|- ( ( ph /\ A = ( B \ A ) ) -> ( P ` A ) = 0 ) |
| 15 |
1 5
|
ffvelcdmd |
|- ( ph -> ( P ` B ) e. ( 0 [,] +oo ) ) |
| 16 |
|
elxrge0 |
|- ( ( P ` B ) e. ( 0 [,] +oo ) <-> ( ( P ` B ) e. RR* /\ 0 <_ ( P ` B ) ) ) |
| 17 |
16
|
simprbi |
|- ( ( P ` B ) e. ( 0 [,] +oo ) -> 0 <_ ( P ` B ) ) |
| 18 |
15 17
|
syl |
|- ( ph -> 0 <_ ( P ` B ) ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ A = ( B \ A ) ) -> 0 <_ ( P ` B ) ) |
| 20 |
14 19
|
eqbrtrd |
|- ( ( ph /\ A = ( B \ A ) ) -> ( P ` A ) <_ ( P ` B ) ) |
| 21 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 22 |
1
|
adantr |
|- ( ( ph /\ A =/= ( B \ A ) ) -> P : R --> ( 0 [,] +oo ) ) |
| 23 |
4
|
adantr |
|- ( ( ph /\ A =/= ( B \ A ) ) -> A e. R ) |
| 24 |
22 23
|
ffvelcdmd |
|- ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` A ) e. ( 0 [,] +oo ) ) |
| 25 |
21 24
|
sselid |
|- ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` A ) e. RR* ) |
| 26 |
6
|
adantr |
|- ( ( ph /\ A =/= ( B \ A ) ) -> ( B \ A ) e. R ) |
| 27 |
22 26
|
ffvelcdmd |
|- ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` ( B \ A ) ) e. ( 0 [,] +oo ) ) |
| 28 |
|
xrge0addge |
|- ( ( ( P ` A ) e. RR* /\ ( P ` ( B \ A ) ) e. ( 0 [,] +oo ) ) -> ( P ` A ) <_ ( ( P ` A ) +e ( P ` ( B \ A ) ) ) ) |
| 29 |
25 27 28
|
syl2anc |
|- ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` A ) <_ ( ( P ` A ) +e ( P ` ( B \ A ) ) ) ) |
| 30 |
|
prct |
|- ( ( A e. R /\ ( B \ A ) e. R ) -> { A , ( B \ A ) } ~<_ _om ) |
| 31 |
4 6 30
|
syl2anc |
|- ( ph -> { A , ( B \ A ) } ~<_ _om ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ A =/= ( B \ A ) ) -> { A , ( B \ A ) } ~<_ _om ) |
| 33 |
|
prssi |
|- ( ( A e. R /\ ( B \ A ) e. R ) -> { A , ( B \ A ) } C_ R ) |
| 34 |
4 6 33
|
syl2anc |
|- ( ph -> { A , ( B \ A ) } C_ R ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ A =/= ( B \ A ) ) -> { A , ( B \ A ) } C_ R ) |
| 36 |
|
disjdif |
|- ( A i^i ( B \ A ) ) = (/) |
| 37 |
|
simpr |
|- ( ( ph /\ A =/= ( B \ A ) ) -> A =/= ( B \ A ) ) |
| 38 |
|
id |
|- ( y = A -> y = A ) |
| 39 |
|
id |
|- ( y = ( B \ A ) -> y = ( B \ A ) ) |
| 40 |
38 39
|
disjprg |
|- ( ( A e. R /\ ( B \ A ) e. R /\ A =/= ( B \ A ) ) -> ( Disj_ y e. { A , ( B \ A ) } y <-> ( A i^i ( B \ A ) ) = (/) ) ) |
| 41 |
23 26 37 40
|
syl3anc |
|- ( ( ph /\ A =/= ( B \ A ) ) -> ( Disj_ y e. { A , ( B \ A ) } y <-> ( A i^i ( B \ A ) ) = (/) ) ) |
| 42 |
36 41
|
mpbiri |
|- ( ( ph /\ A =/= ( B \ A ) ) -> Disj_ y e. { A , ( B \ A ) } y ) |
| 43 |
32 35 42
|
3jca |
|- ( ( ph /\ A =/= ( B \ A ) ) -> ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) |
| 44 |
|
prex |
|- { A , ( B \ A ) } e. _V |
| 45 |
|
biidd |
|- ( x = { A , ( B \ A ) } -> ( ph <-> ph ) ) |
| 46 |
|
breq1 |
|- ( x = { A , ( B \ A ) } -> ( x ~<_ _om <-> { A , ( B \ A ) } ~<_ _om ) ) |
| 47 |
|
sseq1 |
|- ( x = { A , ( B \ A ) } -> ( x C_ R <-> { A , ( B \ A ) } C_ R ) ) |
| 48 |
|
disjeq1 |
|- ( x = { A , ( B \ A ) } -> ( Disj_ y e. x y <-> Disj_ y e. { A , ( B \ A ) } y ) ) |
| 49 |
46 47 48
|
3anbi123d |
|- ( x = { A , ( B \ A ) } -> ( ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) <-> ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) ) |
| 50 |
45 49
|
anbi12d |
|- ( x = { A , ( B \ A ) } -> ( ( ph /\ ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) ) <-> ( ph /\ ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) ) ) |
| 51 |
|
unieq |
|- ( x = { A , ( B \ A ) } -> U. x = U. { A , ( B \ A ) } ) |
| 52 |
51
|
fveq2d |
|- ( x = { A , ( B \ A ) } -> ( P ` U. x ) = ( P ` U. { A , ( B \ A ) } ) ) |
| 53 |
|
esumeq1 |
|- ( x = { A , ( B \ A ) } -> sum* y e. x ( P ` y ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) |
| 54 |
52 53
|
eqeq12d |
|- ( x = { A , ( B \ A ) } -> ( ( P ` U. x ) = sum* y e. x ( P ` y ) <-> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) ) |
| 55 |
50 54
|
imbi12d |
|- ( x = { A , ( B \ A ) } -> ( ( ( ph /\ ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) ) -> ( P ` U. x ) = sum* y e. x ( P ` y ) ) <-> ( ( ph /\ ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) -> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) ) ) |
| 56 |
55 3
|
vtoclg |
|- ( { A , ( B \ A ) } e. _V -> ( ( ph /\ ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) -> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) ) |
| 57 |
44 56
|
ax-mp |
|- ( ( ph /\ ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) -> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) |
| 58 |
57
|
adantlr |
|- ( ( ( ph /\ A =/= ( B \ A ) ) /\ ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) -> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) |
| 59 |
43 58
|
mpdan |
|- ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) |
| 60 |
|
uniprg |
|- ( ( A e. R /\ ( B \ A ) e. R ) -> U. { A , ( B \ A ) } = ( A u. ( B \ A ) ) ) |
| 61 |
4 6 60
|
syl2anc |
|- ( ph -> U. { A , ( B \ A ) } = ( A u. ( B \ A ) ) ) |
| 62 |
|
undif |
|- ( A C_ B <-> ( A u. ( B \ A ) ) = B ) |
| 63 |
7 62
|
sylib |
|- ( ph -> ( A u. ( B \ A ) ) = B ) |
| 64 |
61 63
|
eqtrd |
|- ( ph -> U. { A , ( B \ A ) } = B ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ A =/= ( B \ A ) ) -> U. { A , ( B \ A ) } = B ) |
| 66 |
65
|
fveq2d |
|- ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` U. { A , ( B \ A ) } ) = ( P ` B ) ) |
| 67 |
|
simpr |
|- ( ( ( ph /\ A =/= ( B \ A ) ) /\ y = A ) -> y = A ) |
| 68 |
67
|
fveq2d |
|- ( ( ( ph /\ A =/= ( B \ A ) ) /\ y = A ) -> ( P ` y ) = ( P ` A ) ) |
| 69 |
|
simpr |
|- ( ( ( ph /\ A =/= ( B \ A ) ) /\ y = ( B \ A ) ) -> y = ( B \ A ) ) |
| 70 |
69
|
fveq2d |
|- ( ( ( ph /\ A =/= ( B \ A ) ) /\ y = ( B \ A ) ) -> ( P ` y ) = ( P ` ( B \ A ) ) ) |
| 71 |
68 70 23 26 24 27 37
|
esumpr |
|- ( ( ph /\ A =/= ( B \ A ) ) -> sum* y e. { A , ( B \ A ) } ( P ` y ) = ( ( P ` A ) +e ( P ` ( B \ A ) ) ) ) |
| 72 |
59 66 71
|
3eqtr3d |
|- ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` B ) = ( ( P ` A ) +e ( P ` ( B \ A ) ) ) ) |
| 73 |
29 72
|
breqtrrd |
|- ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` A ) <_ ( P ` B ) ) |
| 74 |
20 73
|
pm2.61dane |
|- ( ph -> ( P ` A ) <_ ( P ` B ) ) |