| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caraext.1 |  |-  ( ph -> P : R --> ( 0 [,] +oo ) ) | 
						
							| 2 |  | caraext.2 |  |-  ( ph -> ( P ` (/) ) = 0 ) | 
						
							| 3 |  | caraext.3 |  |-  ( ( ph /\ ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) ) -> ( P ` U. x ) = sum* y e. x ( P ` y ) ) | 
						
							| 4 |  | pmeasmono.1 |  |-  ( ph -> A e. R ) | 
						
							| 5 |  | pmeasmono.2 |  |-  ( ph -> B e. R ) | 
						
							| 6 |  | pmeasmono.3 |  |-  ( ph -> ( B \ A ) e. R ) | 
						
							| 7 |  | pmeasmono.4 |  |-  ( ph -> A C_ B ) | 
						
							| 8 |  | eqimss |  |-  ( A = ( B \ A ) -> A C_ ( B \ A ) ) | 
						
							| 9 |  | ssdifeq0 |  |-  ( A C_ ( B \ A ) <-> A = (/) ) | 
						
							| 10 | 8 9 | sylib |  |-  ( A = ( B \ A ) -> A = (/) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( A = ( B \ A ) -> ( P ` A ) = ( P ` (/) ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ A = ( B \ A ) ) -> ( P ` A ) = ( P ` (/) ) ) | 
						
							| 13 | 2 | adantr |  |-  ( ( ph /\ A = ( B \ A ) ) -> ( P ` (/) ) = 0 ) | 
						
							| 14 | 12 13 | eqtrd |  |-  ( ( ph /\ A = ( B \ A ) ) -> ( P ` A ) = 0 ) | 
						
							| 15 | 1 5 | ffvelcdmd |  |-  ( ph -> ( P ` B ) e. ( 0 [,] +oo ) ) | 
						
							| 16 |  | elxrge0 |  |-  ( ( P ` B ) e. ( 0 [,] +oo ) <-> ( ( P ` B ) e. RR* /\ 0 <_ ( P ` B ) ) ) | 
						
							| 17 | 16 | simprbi |  |-  ( ( P ` B ) e. ( 0 [,] +oo ) -> 0 <_ ( P ` B ) ) | 
						
							| 18 | 15 17 | syl |  |-  ( ph -> 0 <_ ( P ` B ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ A = ( B \ A ) ) -> 0 <_ ( P ` B ) ) | 
						
							| 20 | 14 19 | eqbrtrd |  |-  ( ( ph /\ A = ( B \ A ) ) -> ( P ` A ) <_ ( P ` B ) ) | 
						
							| 21 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 22 | 1 | adantr |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> P : R --> ( 0 [,] +oo ) ) | 
						
							| 23 | 4 | adantr |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> A e. R ) | 
						
							| 24 | 22 23 | ffvelcdmd |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` A ) e. ( 0 [,] +oo ) ) | 
						
							| 25 | 21 24 | sselid |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` A ) e. RR* ) | 
						
							| 26 | 6 | adantr |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> ( B \ A ) e. R ) | 
						
							| 27 | 22 26 | ffvelcdmd |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` ( B \ A ) ) e. ( 0 [,] +oo ) ) | 
						
							| 28 |  | xrge0addge |  |-  ( ( ( P ` A ) e. RR* /\ ( P ` ( B \ A ) ) e. ( 0 [,] +oo ) ) -> ( P ` A ) <_ ( ( P ` A ) +e ( P ` ( B \ A ) ) ) ) | 
						
							| 29 | 25 27 28 | syl2anc |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` A ) <_ ( ( P ` A ) +e ( P ` ( B \ A ) ) ) ) | 
						
							| 30 |  | prct |  |-  ( ( A e. R /\ ( B \ A ) e. R ) -> { A , ( B \ A ) } ~<_ _om ) | 
						
							| 31 | 4 6 30 | syl2anc |  |-  ( ph -> { A , ( B \ A ) } ~<_ _om ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> { A , ( B \ A ) } ~<_ _om ) | 
						
							| 33 |  | prssi |  |-  ( ( A e. R /\ ( B \ A ) e. R ) -> { A , ( B \ A ) } C_ R ) | 
						
							| 34 | 4 6 33 | syl2anc |  |-  ( ph -> { A , ( B \ A ) } C_ R ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> { A , ( B \ A ) } C_ R ) | 
						
							| 36 |  | disjdif |  |-  ( A i^i ( B \ A ) ) = (/) | 
						
							| 37 |  | simpr |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> A =/= ( B \ A ) ) | 
						
							| 38 |  | id |  |-  ( y = A -> y = A ) | 
						
							| 39 |  | id |  |-  ( y = ( B \ A ) -> y = ( B \ A ) ) | 
						
							| 40 | 38 39 | disjprg |  |-  ( ( A e. R /\ ( B \ A ) e. R /\ A =/= ( B \ A ) ) -> ( Disj_ y e. { A , ( B \ A ) } y <-> ( A i^i ( B \ A ) ) = (/) ) ) | 
						
							| 41 | 23 26 37 40 | syl3anc |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> ( Disj_ y e. { A , ( B \ A ) } y <-> ( A i^i ( B \ A ) ) = (/) ) ) | 
						
							| 42 | 36 41 | mpbiri |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> Disj_ y e. { A , ( B \ A ) } y ) | 
						
							| 43 | 32 35 42 | 3jca |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) | 
						
							| 44 |  | prex |  |-  { A , ( B \ A ) } e. _V | 
						
							| 45 |  | biidd |  |-  ( x = { A , ( B \ A ) } -> ( ph <-> ph ) ) | 
						
							| 46 |  | breq1 |  |-  ( x = { A , ( B \ A ) } -> ( x ~<_ _om <-> { A , ( B \ A ) } ~<_ _om ) ) | 
						
							| 47 |  | sseq1 |  |-  ( x = { A , ( B \ A ) } -> ( x C_ R <-> { A , ( B \ A ) } C_ R ) ) | 
						
							| 48 |  | disjeq1 |  |-  ( x = { A , ( B \ A ) } -> ( Disj_ y e. x y <-> Disj_ y e. { A , ( B \ A ) } y ) ) | 
						
							| 49 | 46 47 48 | 3anbi123d |  |-  ( x = { A , ( B \ A ) } -> ( ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) <-> ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) ) | 
						
							| 50 | 45 49 | anbi12d |  |-  ( x = { A , ( B \ A ) } -> ( ( ph /\ ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) ) <-> ( ph /\ ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) ) ) | 
						
							| 51 |  | unieq |  |-  ( x = { A , ( B \ A ) } -> U. x = U. { A , ( B \ A ) } ) | 
						
							| 52 | 51 | fveq2d |  |-  ( x = { A , ( B \ A ) } -> ( P ` U. x ) = ( P ` U. { A , ( B \ A ) } ) ) | 
						
							| 53 |  | esumeq1 |  |-  ( x = { A , ( B \ A ) } -> sum* y e. x ( P ` y ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) | 
						
							| 54 | 52 53 | eqeq12d |  |-  ( x = { A , ( B \ A ) } -> ( ( P ` U. x ) = sum* y e. x ( P ` y ) <-> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) ) | 
						
							| 55 | 50 54 | imbi12d |  |-  ( x = { A , ( B \ A ) } -> ( ( ( ph /\ ( x ~<_ _om /\ x C_ R /\ Disj_ y e. x y ) ) -> ( P ` U. x ) = sum* y e. x ( P ` y ) ) <-> ( ( ph /\ ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) -> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) ) ) | 
						
							| 56 | 55 3 | vtoclg |  |-  ( { A , ( B \ A ) } e. _V -> ( ( ph /\ ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) -> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) ) | 
						
							| 57 | 44 56 | ax-mp |  |-  ( ( ph /\ ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) -> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) | 
						
							| 58 | 57 | adantlr |  |-  ( ( ( ph /\ A =/= ( B \ A ) ) /\ ( { A , ( B \ A ) } ~<_ _om /\ { A , ( B \ A ) } C_ R /\ Disj_ y e. { A , ( B \ A ) } y ) ) -> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) | 
						
							| 59 | 43 58 | mpdan |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( P ` y ) ) | 
						
							| 60 |  | uniprg |  |-  ( ( A e. R /\ ( B \ A ) e. R ) -> U. { A , ( B \ A ) } = ( A u. ( B \ A ) ) ) | 
						
							| 61 | 4 6 60 | syl2anc |  |-  ( ph -> U. { A , ( B \ A ) } = ( A u. ( B \ A ) ) ) | 
						
							| 62 |  | undif |  |-  ( A C_ B <-> ( A u. ( B \ A ) ) = B ) | 
						
							| 63 | 7 62 | sylib |  |-  ( ph -> ( A u. ( B \ A ) ) = B ) | 
						
							| 64 | 61 63 | eqtrd |  |-  ( ph -> U. { A , ( B \ A ) } = B ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> U. { A , ( B \ A ) } = B ) | 
						
							| 66 | 65 | fveq2d |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` U. { A , ( B \ A ) } ) = ( P ` B ) ) | 
						
							| 67 |  | simpr |  |-  ( ( ( ph /\ A =/= ( B \ A ) ) /\ y = A ) -> y = A ) | 
						
							| 68 | 67 | fveq2d |  |-  ( ( ( ph /\ A =/= ( B \ A ) ) /\ y = A ) -> ( P ` y ) = ( P ` A ) ) | 
						
							| 69 |  | simpr |  |-  ( ( ( ph /\ A =/= ( B \ A ) ) /\ y = ( B \ A ) ) -> y = ( B \ A ) ) | 
						
							| 70 | 69 | fveq2d |  |-  ( ( ( ph /\ A =/= ( B \ A ) ) /\ y = ( B \ A ) ) -> ( P ` y ) = ( P ` ( B \ A ) ) ) | 
						
							| 71 | 68 70 23 26 24 27 37 | esumpr |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> sum* y e. { A , ( B \ A ) } ( P ` y ) = ( ( P ` A ) +e ( P ` ( B \ A ) ) ) ) | 
						
							| 72 | 59 66 71 | 3eqtr3d |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` B ) = ( ( P ` A ) +e ( P ` ( B \ A ) ) ) ) | 
						
							| 73 | 29 72 | breqtrrd |  |-  ( ( ph /\ A =/= ( B \ A ) ) -> ( P ` A ) <_ ( P ` B ) ) | 
						
							| 74 | 20 73 | pm2.61dane |  |-  ( ph -> ( P ` A ) <_ ( P ` B ) ) |