Metamath Proof Explorer


Theorem omsf

Description: A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Assertion omsf ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → ( toOMeas ‘ 𝑅 ) : 𝒫 dom 𝑅 ⟶ ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
2 xrltso < Or ℝ*
3 soss ( ( 0 [,] +∞ ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] +∞ ) ) )
4 1 2 3 mp2 < Or ( 0 [,] +∞ )
5 4 a1i ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → < Or ( 0 [,] +∞ ) )
6 omscl ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ( 0 [,] +∞ ) )
7 6 3expa ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ( 0 [,] +∞ ) )
8 xrge0infss ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ( 0 [,] +∞ ) → ∃ 𝑡 ∈ ( 0 [,] +∞ ) ( ∀ 𝑤 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ¬ 𝑤 < 𝑡 ∧ ∀ 𝑤 ∈ ( 0 [,] +∞ ) ( 𝑡 < 𝑤 → ∃ 𝑠 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) 𝑠 < 𝑤 ) ) )
9 7 8 syl ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → ∃ 𝑡 ∈ ( 0 [,] +∞ ) ( ∀ 𝑤 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ¬ 𝑤 < 𝑡 ∧ ∀ 𝑤 ∈ ( 0 [,] +∞ ) ( 𝑡 < 𝑤 → ∃ 𝑠 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) 𝑠 < 𝑤 ) ) )
10 5 9 infcl ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) , ( 0 [,] +∞ ) , < ) ∈ ( 0 [,] +∞ ) )
11 fex ( ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝑄𝑉 ) → 𝑅 ∈ V )
12 11 ancoms ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → 𝑅 ∈ V )
13 omsval ( 𝑅 ∈ V → ( toOMeas ‘ 𝑅 ) = ( 𝑎 ∈ 𝒫 dom 𝑅 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) )
14 12 13 syl ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → ( toOMeas ‘ 𝑅 ) = ( 𝑎 ∈ 𝒫 dom 𝑅 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) )
15 simpll ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → 𝑄𝑉 )
16 simplr ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )
17 simpr ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → 𝑎 ∈ 𝒫 dom 𝑅 )
18 fdm ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) → dom 𝑅 = 𝑄 )
19 18 unieqd ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) → dom 𝑅 = 𝑄 )
20 19 pweqd ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) → 𝒫 dom 𝑅 = 𝒫 𝑄 )
21 20 ad2antlr ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → 𝒫 dom 𝑅 = 𝒫 𝑄 )
22 17 21 eleqtrd ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → 𝑎 ∈ 𝒫 𝑄 )
23 elpwi ( 𝑎 ∈ 𝒫 𝑄𝑎 𝑄 )
24 22 23 syl ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → 𝑎 𝑄 )
25 omsfval ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝑎 𝑄 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝑎 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) , ( 0 [,] +∞ ) , < ) )
26 15 16 24 25 syl3anc ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝑎 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) , ( 0 [,] +∞ ) , < ) )
27 26 10 eqeltrd ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 dom 𝑅 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝑎 ) ∈ ( 0 [,] +∞ ) )
28 10 14 27 fmpt2d ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → ( toOMeas ‘ 𝑅 ) : 𝒫 dom 𝑅 ⟶ ( 0 [,] +∞ ) )