Step |
Hyp |
Ref |
Expression |
1 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
2 |
|
xrltso |
⊢ < Or ℝ* |
3 |
|
soss |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] +∞ ) ) ) |
4 |
1 2 3
|
mp2 |
⊢ < Or ( 0 [,] +∞ ) |
5 |
4
|
a1i |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → < Or ( 0 [,] +∞ ) ) |
6 |
|
omscl |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ⊆ ( 0 [,] +∞ ) ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ⊆ ( 0 [,] +∞ ) ) |
8 |
|
xrge0infss |
⊢ ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ⊆ ( 0 [,] +∞ ) → ∃ 𝑡 ∈ ( 0 [,] +∞ ) ( ∀ 𝑤 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ¬ 𝑤 < 𝑡 ∧ ∀ 𝑤 ∈ ( 0 [,] +∞ ) ( 𝑡 < 𝑤 → ∃ 𝑠 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) 𝑠 < 𝑤 ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → ∃ 𝑡 ∈ ( 0 [,] +∞ ) ( ∀ 𝑤 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ¬ 𝑤 < 𝑡 ∧ ∀ 𝑤 ∈ ( 0 [,] +∞ ) ( 𝑡 < 𝑤 → ∃ 𝑠 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) 𝑠 < 𝑤 ) ) ) |
10 |
5 9
|
infcl |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ∈ ( 0 [,] +∞ ) ) |
11 |
|
fex |
⊢ ( ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝑄 ∈ 𝑉 ) → 𝑅 ∈ V ) |
12 |
11
|
ancoms |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → 𝑅 ∈ V ) |
13 |
|
omsval |
⊢ ( 𝑅 ∈ V → ( toOMeas ‘ 𝑅 ) = ( 𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → ( toOMeas ‘ 𝑅 ) = ( 𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) ) |
15 |
|
simpll |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → 𝑄 ∈ 𝑉 ) |
16 |
|
simplr |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
17 |
|
simpr |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) |
18 |
|
fdm |
⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) → dom 𝑅 = 𝑄 ) |
19 |
18
|
unieqd |
⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) → ∪ dom 𝑅 = ∪ 𝑄 ) |
20 |
19
|
pweqd |
⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) → 𝒫 ∪ dom 𝑅 = 𝒫 ∪ 𝑄 ) |
21 |
20
|
ad2antlr |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → 𝒫 ∪ dom 𝑅 = 𝒫 ∪ 𝑄 ) |
22 |
17 21
|
eleqtrd |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → 𝑎 ∈ 𝒫 ∪ 𝑄 ) |
23 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 ∪ 𝑄 → 𝑎 ⊆ ∪ 𝑄 ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → 𝑎 ⊆ ∪ 𝑄 ) |
25 |
|
omsfval |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝑎 ⊆ ∪ 𝑄 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝑎 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) |
26 |
15 16 24 25
|
syl3anc |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝑎 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) |
27 |
26 10
|
eqeltrd |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝑎 ) ∈ ( 0 [,] +∞ ) ) |
28 |
10 14 27
|
fmpt2d |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → ( toOMeas ‘ 𝑅 ) : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |