| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 2 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 3 |  | soss | ⊢ ( ( 0 [,] +∞ )  ⊆  ℝ*  →  (  <   Or  ℝ*  →   <   Or  ( 0 [,] +∞ ) ) ) | 
						
							| 4 | 1 2 3 | mp2 | ⊢  <   Or  ( 0 [,] +∞ ) | 
						
							| 5 | 4 | a1i | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →   <   Or  ( 0 [,] +∞ ) ) | 
						
							| 6 |  | omscl | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 7 | 6 | 3expa | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 8 |  | xrge0infss | ⊢ ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ⊆  ( 0 [,] +∞ )  →  ∃ 𝑡  ∈  ( 0 [,] +∞ ) ( ∀ 𝑤  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ¬  𝑤  <  𝑡  ∧  ∀ 𝑤  ∈  ( 0 [,] +∞ ) ( 𝑡  <  𝑤  →  ∃ 𝑠  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) 𝑠  <  𝑤 ) ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  ∃ 𝑡  ∈  ( 0 [,] +∞ ) ( ∀ 𝑤  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ¬  𝑤  <  𝑡  ∧  ∀ 𝑤  ∈  ( 0 [,] +∞ ) ( 𝑡  <  𝑤  →  ∃ 𝑠  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) 𝑠  <  𝑤 ) ) ) | 
						
							| 10 | 5 9 | infcl | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 11 |  | fex | ⊢ ( ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝑄  ∈  𝑉 )  →  𝑅  ∈  V ) | 
						
							| 12 | 11 | ancoms | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  →  𝑅  ∈  V ) | 
						
							| 13 |  | omsval | ⊢ ( 𝑅  ∈  V  →  ( toOMeas ‘ 𝑅 )  =  ( 𝑎  ∈  𝒫  ∪  dom  𝑅  ↦  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  →  ( toOMeas ‘ 𝑅 )  =  ( 𝑎  ∈  𝒫  ∪  dom  𝑅  ↦  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) ) | 
						
							| 15 |  | simpll | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  𝑄  ∈  𝑉 ) | 
						
							| 16 |  | simplr | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  𝑎  ∈  𝒫  ∪  dom  𝑅 ) | 
						
							| 18 |  | fdm | ⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  →  dom  𝑅  =  𝑄 ) | 
						
							| 19 | 18 | unieqd | ⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  →  ∪  dom  𝑅  =  ∪  𝑄 ) | 
						
							| 20 | 19 | pweqd | ⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  →  𝒫  ∪  dom  𝑅  =  𝒫  ∪  𝑄 ) | 
						
							| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  𝒫  ∪  dom  𝑅  =  𝒫  ∪  𝑄 ) | 
						
							| 22 | 17 21 | eleqtrd | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  𝑎  ∈  𝒫  ∪  𝑄 ) | 
						
							| 23 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  ∪  𝑄  →  𝑎  ⊆  ∪  𝑄 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  𝑎  ⊆  ∪  𝑄 ) | 
						
							| 25 |  | omsfval | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝑎  ⊆  ∪  𝑄 )  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝑎 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 26 | 15 16 24 25 | syl3anc | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝑎 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 27 | 26 10 | eqeltrd | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  ∧  𝑎  ∈  𝒫  ∪  dom  𝑅 )  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝑎 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 28 | 10 14 27 | fmpt2d | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  →  ( toOMeas ‘ 𝑅 ) : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) |