| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  𝑄  ∈  𝑉 ) | 
						
							| 3 | 1 2 | fexd | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  𝑅  ∈  V ) | 
						
							| 4 |  | omsval | ⊢ ( 𝑅  ∈  V  →  ( toOMeas ‘ 𝑅 )  =  ( 𝑎  ∈  𝒫  ∪  dom  𝑅  ↦  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  ( toOMeas ‘ 𝑅 )  =  ( 𝑎  ∈  𝒫  ∪  dom  𝑅  ↦  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  ∧  𝑎  =  𝐴 )  →  𝑎  =  𝐴 ) | 
						
							| 7 | 6 | sseq1d | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  ∧  𝑎  =  𝐴 )  →  ( 𝑎  ⊆  ∪  𝑧  ↔  𝐴  ⊆  ∪  𝑧 ) ) | 
						
							| 8 | 7 | anbi1d | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  ∧  𝑎  =  𝐴 )  →  ( ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω )  ↔  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) ) ) | 
						
							| 9 | 8 | rabbidv | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  ∧  𝑎  =  𝐴 )  →  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  =  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ) | 
						
							| 10 | 9 | mpteq1d | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  ∧  𝑎  =  𝐴 )  →  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  =  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 11 | 10 | rneqd | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  ∧  𝑎  =  𝐴 )  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  =  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 12 | 11 | infeq1d | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  ∧  𝑎  =  𝐴 )  →  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝑎  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 13 |  | simp3 | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  𝐴  ⊆  ∪  𝑄 ) | 
						
							| 14 |  | fdm | ⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  →  dom  𝑅  =  𝑄 ) | 
						
							| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  dom  𝑅  =  𝑄 ) | 
						
							| 16 | 15 | unieqd | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  ∪  dom  𝑅  =  ∪  𝑄 ) | 
						
							| 17 | 13 16 | sseqtrrd | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  𝐴  ⊆  ∪  dom  𝑅 ) | 
						
							| 18 | 2 | uniexd | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  ∪  𝑄  ∈  V ) | 
						
							| 19 |  | ssexg | ⊢ ( ( 𝐴  ⊆  ∪  𝑄  ∧  ∪  𝑄  ∈  V )  →  𝐴  ∈  V ) | 
						
							| 20 | 13 18 19 | syl2anc | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  𝐴  ∈  V ) | 
						
							| 21 |  | elpwg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  𝒫  ∪  dom  𝑅  ↔  𝐴  ⊆  ∪  dom  𝑅 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  ( 𝐴  ∈  𝒫  ∪  dom  𝑅  ↔  𝐴  ⊆  ∪  dom  𝑅 ) ) | 
						
							| 23 | 17 22 | mpbird | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  𝐴  ∈  𝒫  ∪  dom  𝑅 ) | 
						
							| 24 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 25 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 26 |  | soss | ⊢ ( ( 0 [,] +∞ )  ⊆  ℝ*  →  (  <   Or  ℝ*  →   <   Or  ( 0 [,] +∞ ) ) ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ (  <   Or  ℝ*  →   <   Or  ( 0 [,] +∞ ) ) | 
						
							| 28 | 24 27 | mp1i | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →   <   Or  ( 0 [,] +∞ ) ) | 
						
							| 29 | 28 | infexd | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  )  ∈  V ) | 
						
							| 30 | 5 12 23 29 | fvmptd | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) |