Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
2 |
|
simp1 |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → 𝑄 ∈ 𝑉 ) |
3 |
1 2
|
fexd |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → 𝑅 ∈ V ) |
4 |
|
omsval |
⊢ ( 𝑅 ∈ V → ( toOMeas ‘ 𝑅 ) = ( 𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → ( toOMeas ‘ 𝑅 ) = ( 𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) ) |
6 |
|
simpr |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) ∧ 𝑎 = 𝐴 ) → 𝑎 = 𝐴 ) |
7 |
6
|
sseq1d |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) ∧ 𝑎 = 𝐴 ) → ( 𝑎 ⊆ ∪ 𝑧 ↔ 𝐴 ⊆ ∪ 𝑧 ) ) |
8 |
7
|
anbi1d |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) ∧ 𝑎 = 𝐴 ) → ( ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) ↔ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) ) ) |
9 |
8
|
rabbidv |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) ∧ 𝑎 = 𝐴 ) → { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } = { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) |
10 |
9
|
mpteq1d |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) ∧ 𝑎 = 𝐴 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ) |
11 |
10
|
rneqd |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) ∧ 𝑎 = 𝐴 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) = ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ) |
12 |
11
|
infeq1d |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) ∧ 𝑎 = 𝐴 ) → inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) |
13 |
|
simp3 |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → 𝐴 ⊆ ∪ 𝑄 ) |
14 |
|
fdm |
⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) → dom 𝑅 = 𝑄 ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → dom 𝑅 = 𝑄 ) |
16 |
15
|
unieqd |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → ∪ dom 𝑅 = ∪ 𝑄 ) |
17 |
13 16
|
sseqtrrd |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → 𝐴 ⊆ ∪ dom 𝑅 ) |
18 |
2
|
uniexd |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → ∪ 𝑄 ∈ V ) |
19 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ∪ 𝑄 ∧ ∪ 𝑄 ∈ V ) → 𝐴 ∈ V ) |
20 |
13 18 19
|
syl2anc |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → 𝐴 ∈ V ) |
21 |
|
elpwg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ∪ dom 𝑅 ↔ 𝐴 ⊆ ∪ dom 𝑅 ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → ( 𝐴 ∈ 𝒫 ∪ dom 𝑅 ↔ 𝐴 ⊆ ∪ dom 𝑅 ) ) |
23 |
17 22
|
mpbird |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) |
24 |
|
xrltso |
⊢ < Or ℝ* |
25 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
26 |
|
soss |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] +∞ ) ) ) |
27 |
25 26
|
ax-mp |
⊢ ( < Or ℝ* → < Or ( 0 [,] +∞ ) ) |
28 |
24 27
|
mp1i |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → < Or ( 0 [,] +∞ ) ) |
29 |
28
|
infexd |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ∈ V ) |
30 |
5 12 23 29
|
fvmptd |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) |