| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> R : Q --> ( 0 [,] +oo ) ) | 
						
							| 2 |  | simp1 |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> Q e. V ) | 
						
							| 3 | 1 2 | fexd |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> R e. _V ) | 
						
							| 4 |  | omsval |  |-  ( R e. _V -> ( toOMeas ` R ) = ( a e. ~P U. dom R |-> inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> ( toOMeas ` R ) = ( a e. ~P U. dom R |-> inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) ) | 
						
							| 6 |  | simpr |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) /\ a = A ) -> a = A ) | 
						
							| 7 | 6 | sseq1d |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) /\ a = A ) -> ( a C_ U. z <-> A C_ U. z ) ) | 
						
							| 8 | 7 | anbi1d |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) /\ a = A ) -> ( ( a C_ U. z /\ z ~<_ _om ) <-> ( A C_ U. z /\ z ~<_ _om ) ) ) | 
						
							| 9 | 8 | rabbidv |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) /\ a = A ) -> { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } = { z e. ~P dom R | ( A C_ U. z /\ z ~<_ _om ) } ) | 
						
							| 10 | 9 | mpteq1d |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) /\ a = A ) -> ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) = ( x e. { z e. ~P dom R | ( A C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) ) | 
						
							| 11 | 10 | rneqd |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) /\ a = A ) -> ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) = ran ( x e. { z e. ~P dom R | ( A C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) ) | 
						
							| 12 | 11 | infeq1d |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) /\ a = A ) -> inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) = inf ( ran ( x e. { z e. ~P dom R | ( A C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) | 
						
							| 13 |  | simp3 |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> A C_ U. Q ) | 
						
							| 14 |  | fdm |  |-  ( R : Q --> ( 0 [,] +oo ) -> dom R = Q ) | 
						
							| 15 | 14 | 3ad2ant2 |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> dom R = Q ) | 
						
							| 16 | 15 | unieqd |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> U. dom R = U. Q ) | 
						
							| 17 | 13 16 | sseqtrrd |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> A C_ U. dom R ) | 
						
							| 18 | 2 | uniexd |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> U. Q e. _V ) | 
						
							| 19 |  | ssexg |  |-  ( ( A C_ U. Q /\ U. Q e. _V ) -> A e. _V ) | 
						
							| 20 | 13 18 19 | syl2anc |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> A e. _V ) | 
						
							| 21 |  | elpwg |  |-  ( A e. _V -> ( A e. ~P U. dom R <-> A C_ U. dom R ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> ( A e. ~P U. dom R <-> A C_ U. dom R ) ) | 
						
							| 23 | 17 22 | mpbird |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> A e. ~P U. dom R ) | 
						
							| 24 |  | xrltso |  |-  < Or RR* | 
						
							| 25 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 26 |  | soss |  |-  ( ( 0 [,] +oo ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] +oo ) ) ) | 
						
							| 27 | 25 26 | ax-mp |  |-  ( < Or RR* -> < Or ( 0 [,] +oo ) ) | 
						
							| 28 | 24 27 | mp1i |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> < Or ( 0 [,] +oo ) ) | 
						
							| 29 | 28 | infexd |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> inf ( ran ( x e. { z e. ~P dom R | ( A C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) e. _V ) | 
						
							| 30 | 5 12 23 29 | fvmptd |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ A C_ U. Q ) -> ( ( toOMeas ` R ) ` A ) = inf ( ran ( x e. { z e. ~P dom R | ( A C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) |