Metamath Proof Explorer


Theorem omsfval

Description: Value of the outer measure evaluated for a given set A . (Contributed by Thierry Arnoux, 15-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Assertion omsfval Q V R : Q 0 +∞ A Q toOMeas R A = sup ran x z 𝒫 dom R | A z z ω * y x R y 0 +∞ <

Proof

Step Hyp Ref Expression
1 simp2 Q V R : Q 0 +∞ A Q R : Q 0 +∞
2 simp1 Q V R : Q 0 +∞ A Q Q V
3 fex R : Q 0 +∞ Q V R V
4 1 2 3 syl2anc Q V R : Q 0 +∞ A Q R V
5 omsval R V toOMeas R = a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <
6 4 5 syl Q V R : Q 0 +∞ A Q toOMeas R = a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <
7 simpr Q V R : Q 0 +∞ A Q a = A a = A
8 7 sseq1d Q V R : Q 0 +∞ A Q a = A a z A z
9 8 anbi1d Q V R : Q 0 +∞ A Q a = A a z z ω A z z ω
10 9 rabbidv Q V R : Q 0 +∞ A Q a = A z 𝒫 dom R | a z z ω = z 𝒫 dom R | A z z ω
11 10 mpteq1d Q V R : Q 0 +∞ A Q a = A x z 𝒫 dom R | a z z ω * y x R y = x z 𝒫 dom R | A z z ω * y x R y
12 11 rneqd Q V R : Q 0 +∞ A Q a = A ran x z 𝒫 dom R | a z z ω * y x R y = ran x z 𝒫 dom R | A z z ω * y x R y
13 12 infeq1d Q V R : Q 0 +∞ A Q a = A sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ < = sup ran x z 𝒫 dom R | A z z ω * y x R y 0 +∞ <
14 simp3 Q V R : Q 0 +∞ A Q A Q
15 fdm R : Q 0 +∞ dom R = Q
16 15 3ad2ant2 Q V R : Q 0 +∞ A Q dom R = Q
17 16 unieqd Q V R : Q 0 +∞ A Q dom R = Q
18 14 17 sseqtrrd Q V R : Q 0 +∞ A Q A dom R
19 2 uniexd Q V R : Q 0 +∞ A Q Q V
20 ssexg A Q Q V A V
21 14 19 20 syl2anc Q V R : Q 0 +∞ A Q A V
22 elpwg A V A 𝒫 dom R A dom R
23 21 22 syl Q V R : Q 0 +∞ A Q A 𝒫 dom R A dom R
24 18 23 mpbird Q V R : Q 0 +∞ A Q A 𝒫 dom R
25 xrltso < Or *
26 iccssxr 0 +∞ *
27 soss 0 +∞ * < Or * < Or 0 +∞
28 26 27 ax-mp < Or * < Or 0 +∞
29 25 28 mp1i Q V R : Q 0 +∞ A Q < Or 0 +∞
30 29 infexd Q V R : Q 0 +∞ A Q sup ran x z 𝒫 dom R | A z z ω * y x R y 0 +∞ < V
31 6 13 24 30 fvmptd Q V R : Q 0 +∞ A Q toOMeas R A = sup ran x z 𝒫 dom R | A z z ω * y x R y 0 +∞ <