| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex |  | 
						
							| 2 |  | simp2 |  | 
						
							| 3 | 2 | ad2antrr |  | 
						
							| 4 |  | ssrab2 |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 | 4 5 | sselid |  | 
						
							| 7 |  | fdm |  | 
						
							| 8 | 7 | pweqd |  | 
						
							| 9 | 2 8 | syl |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 6 10 | eleqtrd |  | 
						
							| 12 |  | elpwi |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 | 13 | sselda |  | 
						
							| 15 | 3 14 | ffvelcdmd |  | 
						
							| 16 | 15 | ralrimiva |  | 
						
							| 17 |  | nfcv |  | 
						
							| 18 | 17 | esumcl |  | 
						
							| 19 | 1 16 18 | sylancr |  | 
						
							| 20 | 19 | ralrimiva |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 21 | rnmptss |  | 
						
							| 23 | 20 22 | syl |  |