| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 | 2 | ad2antrr | ⊢ ( ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 4 |  | ssrab2 | ⊢ { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ⊆  𝒫  dom  𝑅 | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  →  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ) | 
						
							| 6 | 4 5 | sselid | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  →  𝑥  ∈  𝒫  dom  𝑅 ) | 
						
							| 7 |  | fdm | ⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  →  dom  𝑅  =  𝑄 ) | 
						
							| 8 | 7 | pweqd | ⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  →  𝒫  dom  𝑅  =  𝒫  𝑄 ) | 
						
							| 9 | 2 8 | syl | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  →  𝒫  dom  𝑅  =  𝒫  𝑄 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  →  𝒫  dom  𝑅  =  𝒫  𝑄 ) | 
						
							| 11 | 6 10 | eleqtrd | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  →  𝑥  ∈  𝒫  𝑄 ) | 
						
							| 12 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝑄  →  𝑥  ⊆  𝑄 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  →  𝑥  ⊆  𝑄 ) | 
						
							| 14 | 13 | sselda | ⊢ ( ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑄 ) | 
						
							| 15 | 3 14 | ffvelcdmd | ⊢ ( ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 16 | 15 | ralrimiva | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  →  ∀ 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑦 𝑥 | 
						
							| 18 | 17 | esumcl | ⊢ ( ( 𝑥  ∈  V  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 19 | 1 16 18 | sylancr | ⊢ ( ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  →  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 20 | 19 | ralrimiva | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  →  ∀ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  =  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 22 | 21 | rnmptss | ⊢ ( ∀ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ )  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 23 | 20 22 | syl | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ⊆  ( 0 [,] +∞ ) ) |