Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
|
simp2 |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
3 |
2
|
ad2antrr |
⊢ ( ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
4 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ⊆ 𝒫 dom 𝑅 |
5 |
|
simpr |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) → 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) |
6 |
4 5
|
sselid |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) → 𝑥 ∈ 𝒫 dom 𝑅 ) |
7 |
|
fdm |
⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) → dom 𝑅 = 𝑄 ) |
8 |
7
|
pweqd |
⊢ ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) → 𝒫 dom 𝑅 = 𝒫 𝑄 ) |
9 |
2 8
|
syl |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) → 𝒫 dom 𝑅 = 𝒫 𝑄 ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) → 𝒫 dom 𝑅 = 𝒫 𝑄 ) |
11 |
6 10
|
eleqtrd |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) → 𝑥 ∈ 𝒫 𝑄 ) |
12 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑄 → 𝑥 ⊆ 𝑄 ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) → 𝑥 ⊆ 𝑄 ) |
14 |
13
|
sselda |
⊢ ( ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑄 ) |
15 |
3 14
|
ffvelrnd |
⊢ ( ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
16 |
15
|
ralrimiva |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) → ∀ 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑥 |
18 |
17
|
esumcl |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
19 |
1 16 18
|
sylancr |
⊢ ( ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) → Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
20 |
19
|
ralrimiva |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) → ∀ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
21 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) |
22 |
21
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ⊆ ( 0 [,] +∞ ) ) |
23 |
20 22
|
syl |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ⊆ ( 0 [,] +∞ ) ) |