Metamath Proof Explorer


Theorem omscl

Description: A closure lemma for the constructed outer measure. (Contributed by Thierry Arnoux, 17-Sep-2019)

Ref Expression
Assertion omscl ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 simp2 ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )
3 2 ad2antrr ( ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )
4 ssrab2 { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ⊆ 𝒫 dom 𝑅
5 simpr ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) → 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } )
6 4 5 sseldi ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) → 𝑥 ∈ 𝒫 dom 𝑅 )
7 fdm ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) → dom 𝑅 = 𝑄 )
8 7 pweqd ( 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) → 𝒫 dom 𝑅 = 𝒫 𝑄 )
9 2 8 syl ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) → 𝒫 dom 𝑅 = 𝒫 𝑄 )
10 9 adantr ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) → 𝒫 dom 𝑅 = 𝒫 𝑄 )
11 6 10 eleqtrd ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) → 𝑥 ∈ 𝒫 𝑄 )
12 elpwi ( 𝑥 ∈ 𝒫 𝑄𝑥𝑄 )
13 11 12 syl ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) → 𝑥𝑄 )
14 13 sselda ( ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → 𝑦𝑄 )
15 3 14 ffvelrnd ( ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) )
16 15 ralrimiva ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) → ∀ 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) )
17 nfcv 𝑦 𝑥
18 17 esumcl ( ( 𝑥 ∈ V ∧ ∀ 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) )
19 1 16 18 sylancr ( ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) → Σ* 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) )
20 19 ralrimiva ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) → ∀ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } Σ* 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) )
21 eqid ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) )
22 21 rnmptss ( ∀ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } Σ* 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ( 0 [,] +∞ ) )
23 20 22 syl ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 dom 𝑅 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ( 0 [,] +∞ ) )