Metamath Proof Explorer


Theorem omsval

Description: Value of the function mapping a content function to the corresponding outer measure. (Contributed by Thierry Arnoux, 15-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Assertion omsval R V toOMeas R = a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <

Proof

Step Hyp Ref Expression
1 df-oms toOMeas = r V a 𝒫 dom r sup ran x z 𝒫 dom r | a z z ω * y x r y 0 +∞ <
2 dmeq r = R dom r = dom R
3 2 unieqd r = R dom r = dom R
4 3 pweqd r = R 𝒫 dom r = 𝒫 dom R
5 2 pweqd r = R 𝒫 dom r = 𝒫 dom R
6 rabeq 𝒫 dom r = 𝒫 dom R z 𝒫 dom r | a z z ω = z 𝒫 dom R | a z z ω
7 5 6 syl r = R z 𝒫 dom r | a z z ω = z 𝒫 dom R | a z z ω
8 simpl r = R y x r = R
9 8 fveq1d r = R y x r y = R y
10 9 esumeq2dv r = R * y x r y = * y x R y
11 7 10 mpteq12dv r = R x z 𝒫 dom r | a z z ω * y x r y = x z 𝒫 dom R | a z z ω * y x R y
12 11 rneqd r = R ran x z 𝒫 dom r | a z z ω * y x r y = ran x z 𝒫 dom R | a z z ω * y x R y
13 12 infeq1d r = R sup ran x z 𝒫 dom r | a z z ω * y x r y 0 +∞ < = sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <
14 4 13 mpteq12dv r = R a 𝒫 dom r sup ran x z 𝒫 dom r | a z z ω * y x r y 0 +∞ < = a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <
15 id R V R V
16 dmexg R V dom R V
17 uniexg dom R V dom R V
18 pwexg dom R V 𝒫 dom R V
19 mptexg 𝒫 dom R V a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ < V
20 16 17 18 19 4syl R V a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ < V
21 1 14 15 20 fvmptd3 R V toOMeas R = a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <