| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 2 |  | xrltso |  |-  < Or RR* | 
						
							| 3 |  | soss |  |-  ( ( 0 [,] +oo ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] +oo ) ) ) | 
						
							| 4 | 1 2 3 | mp2 |  |-  < Or ( 0 [,] +oo ) | 
						
							| 5 | 4 | a1i |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> < Or ( 0 [,] +oo ) ) | 
						
							| 6 |  | omscl |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ a e. ~P U. dom R ) -> ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) C_ ( 0 [,] +oo ) ) | 
						
							| 7 | 6 | 3expa |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) C_ ( 0 [,] +oo ) ) | 
						
							| 8 |  | xrge0infss |  |-  ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) C_ ( 0 [,] +oo ) -> E. t e. ( 0 [,] +oo ) ( A. w e. ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) -. w < t /\ A. w e. ( 0 [,] +oo ) ( t < w -> E. s e. ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) s < w ) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> E. t e. ( 0 [,] +oo ) ( A. w e. ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) -. w < t /\ A. w e. ( 0 [,] +oo ) ( t < w -> E. s e. ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) s < w ) ) ) | 
						
							| 10 | 5 9 | infcl |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) e. ( 0 [,] +oo ) ) | 
						
							| 11 |  | fex |  |-  ( ( R : Q --> ( 0 [,] +oo ) /\ Q e. V ) -> R e. _V ) | 
						
							| 12 | 11 | ancoms |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) -> R e. _V ) | 
						
							| 13 |  | omsval |  |-  ( R e. _V -> ( toOMeas ` R ) = ( a e. ~P U. dom R |-> inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) -> ( toOMeas ` R ) = ( a e. ~P U. dom R |-> inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) ) | 
						
							| 15 |  | simpll |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> Q e. V ) | 
						
							| 16 |  | simplr |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> R : Q --> ( 0 [,] +oo ) ) | 
						
							| 17 |  | simpr |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> a e. ~P U. dom R ) | 
						
							| 18 |  | fdm |  |-  ( R : Q --> ( 0 [,] +oo ) -> dom R = Q ) | 
						
							| 19 | 18 | unieqd |  |-  ( R : Q --> ( 0 [,] +oo ) -> U. dom R = U. Q ) | 
						
							| 20 | 19 | pweqd |  |-  ( R : Q --> ( 0 [,] +oo ) -> ~P U. dom R = ~P U. Q ) | 
						
							| 21 | 20 | ad2antlr |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> ~P U. dom R = ~P U. Q ) | 
						
							| 22 | 17 21 | eleqtrd |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> a e. ~P U. Q ) | 
						
							| 23 |  | elpwi |  |-  ( a e. ~P U. Q -> a C_ U. Q ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> a C_ U. Q ) | 
						
							| 25 |  | omsfval |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ a C_ U. Q ) -> ( ( toOMeas ` R ) ` a ) = inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) | 
						
							| 26 | 15 16 24 25 | syl3anc |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> ( ( toOMeas ` R ) ` a ) = inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) | 
						
							| 27 | 26 10 | eqeltrd |  |-  ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> ( ( toOMeas ` R ) ` a ) e. ( 0 [,] +oo ) ) | 
						
							| 28 | 10 14 27 | fmpt2d |  |-  ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) -> ( toOMeas ` R ) : ~P U. dom R --> ( 0 [,] +oo ) ) |