Step |
Hyp |
Ref |
Expression |
1 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
2 |
|
xrltso |
|- < Or RR* |
3 |
|
soss |
|- ( ( 0 [,] +oo ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] +oo ) ) ) |
4 |
1 2 3
|
mp2 |
|- < Or ( 0 [,] +oo ) |
5 |
4
|
a1i |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> < Or ( 0 [,] +oo ) ) |
6 |
|
omscl |
|- ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ a e. ~P U. dom R ) -> ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) C_ ( 0 [,] +oo ) ) |
7 |
6
|
3expa |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) C_ ( 0 [,] +oo ) ) |
8 |
|
xrge0infss |
|- ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) C_ ( 0 [,] +oo ) -> E. t e. ( 0 [,] +oo ) ( A. w e. ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) -. w < t /\ A. w e. ( 0 [,] +oo ) ( t < w -> E. s e. ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) s < w ) ) ) |
9 |
7 8
|
syl |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> E. t e. ( 0 [,] +oo ) ( A. w e. ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) -. w < t /\ A. w e. ( 0 [,] +oo ) ( t < w -> E. s e. ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) s < w ) ) ) |
10 |
5 9
|
infcl |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) e. ( 0 [,] +oo ) ) |
11 |
|
fex |
|- ( ( R : Q --> ( 0 [,] +oo ) /\ Q e. V ) -> R e. _V ) |
12 |
11
|
ancoms |
|- ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) -> R e. _V ) |
13 |
|
omsval |
|- ( R e. _V -> ( toOMeas ` R ) = ( a e. ~P U. dom R |-> inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) ) |
14 |
12 13
|
syl |
|- ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) -> ( toOMeas ` R ) = ( a e. ~P U. dom R |-> inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) ) |
15 |
|
simpll |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> Q e. V ) |
16 |
|
simplr |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> R : Q --> ( 0 [,] +oo ) ) |
17 |
|
simpr |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> a e. ~P U. dom R ) |
18 |
|
fdm |
|- ( R : Q --> ( 0 [,] +oo ) -> dom R = Q ) |
19 |
18
|
unieqd |
|- ( R : Q --> ( 0 [,] +oo ) -> U. dom R = U. Q ) |
20 |
19
|
pweqd |
|- ( R : Q --> ( 0 [,] +oo ) -> ~P U. dom R = ~P U. Q ) |
21 |
20
|
ad2antlr |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> ~P U. dom R = ~P U. Q ) |
22 |
17 21
|
eleqtrd |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> a e. ~P U. Q ) |
23 |
|
elpwi |
|- ( a e. ~P U. Q -> a C_ U. Q ) |
24 |
22 23
|
syl |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> a C_ U. Q ) |
25 |
|
omsfval |
|- ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) /\ a C_ U. Q ) -> ( ( toOMeas ` R ) ` a ) = inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) |
26 |
15 16 24 25
|
syl3anc |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> ( ( toOMeas ` R ) ` a ) = inf ( ran ( x e. { z e. ~P dom R | ( a C_ U. z /\ z ~<_ _om ) } |-> sum* y e. x ( R ` y ) ) , ( 0 [,] +oo ) , < ) ) |
27 |
26 10
|
eqeltrd |
|- ( ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) /\ a e. ~P U. dom R ) -> ( ( toOMeas ` R ) ` a ) e. ( 0 [,] +oo ) ) |
28 |
10 14 27
|
fmpt2d |
|- ( ( Q e. V /\ R : Q --> ( 0 [,] +oo ) ) -> ( toOMeas ` R ) : ~P U. dom R --> ( 0 [,] +oo ) ) |