Metamath Proof Explorer


Theorem omsmon

Description: A constructed outer measure is monotone. Note in Example 1.5.2 of Bogachev p. 17. (Contributed by Thierry Arnoux, 15-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Hypotheses oms.m 𝑀 = ( toOMeas ‘ 𝑅 )
oms.o ( 𝜑𝑄𝑉 )
oms.r ( 𝜑𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )
omsmon.a ( 𝜑𝐴𝐵 )
omsmon.b ( 𝜑𝐵 𝑄 )
Assertion omsmon ( 𝜑 → ( 𝑀𝐴 ) ≤ ( 𝑀𝐵 ) )

Proof

Step Hyp Ref Expression
1 oms.m 𝑀 = ( toOMeas ‘ 𝑅 )
2 oms.o ( 𝜑𝑄𝑉 )
3 oms.r ( 𝜑𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )
4 omsmon.a ( 𝜑𝐴𝐵 )
5 omsmon.b ( 𝜑𝐵 𝑄 )
6 4 adantr ( ( 𝜑𝑧 ∈ 𝒫 dom 𝑅 ) → 𝐴𝐵 )
7 sstr2 ( 𝐴𝐵 → ( 𝐵 𝑧𝐴 𝑧 ) )
8 6 7 syl ( ( 𝜑𝑧 ∈ 𝒫 dom 𝑅 ) → ( 𝐵 𝑧𝐴 𝑧 ) )
9 8 anim1d ( ( 𝜑𝑧 ∈ 𝒫 dom 𝑅 ) → ( ( 𝐵 𝑧𝑧 ≼ ω ) → ( 𝐴 𝑧𝑧 ≼ ω ) ) )
10 9 ss2rabdv ( 𝜑 → { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } )
11 resmpt ( { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } → ( ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ↾ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) )
12 10 11 syl ( 𝜑 → ( ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ↾ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) )
13 resss ( ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ↾ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ) ⊆ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) )
14 12 13 eqsstrrdi ( 𝜑 → ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) )
15 rnss ( ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) )
16 14 15 syl ( 𝜑 → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) )
17 3 ad2antrr ( ( ( 𝜑𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )
18 ssrab2 { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ⊆ 𝒫 dom 𝑅
19 simplr ( ( ( 𝜑𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } )
20 18 19 sseldi ( ( ( 𝜑𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → 𝑥 ∈ 𝒫 dom 𝑅 )
21 elpwi ( 𝑥 ∈ 𝒫 dom 𝑅𝑥 ⊆ dom 𝑅 )
22 20 21 syl ( ( ( 𝜑𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → 𝑥 ⊆ dom 𝑅 )
23 3 fdmd ( 𝜑 → dom 𝑅 = 𝑄 )
24 23 ad2antrr ( ( ( 𝜑𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → dom 𝑅 = 𝑄 )
25 22 24 sseqtrd ( ( ( 𝜑𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → 𝑥𝑄 )
26 simpr ( ( ( 𝜑𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → 𝑦𝑥 )
27 25 26 sseldd ( ( ( 𝜑𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → 𝑦𝑄 )
28 17 27 ffvelrnd ( ( ( 𝜑𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) ∧ 𝑦𝑥 ) → ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) )
29 28 ralrimiva ( ( 𝜑𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) → ∀ 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) )
30 vex 𝑥 ∈ V
31 nfcv 𝑦 𝑥
32 31 esumcl ( ( 𝑥 ∈ V ∧ ∀ 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) )
33 30 32 mpan ( ∀ 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) → Σ* 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) )
34 29 33 syl ( ( 𝜑𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ) → Σ* 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) )
35 34 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } Σ* 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) )
36 eqid ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) )
37 36 rnmptss ( ∀ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } Σ* 𝑦𝑥 ( 𝑅𝑦 ) ∈ ( 0 [,] +∞ ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ( 0 [,] +∞ ) )
38 35 37 syl ( 𝜑 → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) ⊆ ( 0 [,] +∞ ) )
39 16 38 xrge0infssd ( 𝜑 → inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) , ( 0 [,] +∞ ) , < ) ≤ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) , ( 0 [,] +∞ ) , < ) )
40 4 5 sstrd ( 𝜑𝐴 𝑄 )
41 omsfval ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 𝑄 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) , ( 0 [,] +∞ ) , < ) )
42 2 3 40 41 syl3anc ( 𝜑 → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) , ( 0 [,] +∞ ) , < ) )
43 omsfval ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐵 𝑄 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) , ( 0 [,] +∞ ) , < ) )
44 2 3 5 43 syl3anc ( 𝜑 → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 𝑧𝑧 ≼ ω ) } ↦ Σ* 𝑦𝑥 ( 𝑅𝑦 ) ) , ( 0 [,] +∞ ) , < ) )
45 39 42 44 3brtr4d ( 𝜑 → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) ≤ ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 ) )
46 1 fveq1i ( 𝑀𝐴 ) = ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 )
47 1 fveq1i ( 𝑀𝐵 ) = ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 )
48 45 46 47 3brtr4g ( 𝜑 → ( 𝑀𝐴 ) ≤ ( 𝑀𝐵 ) )