| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oms.m |
⊢ 𝑀 = ( toOMeas ‘ 𝑅 ) |
| 2 |
|
oms.o |
⊢ ( 𝜑 → 𝑄 ∈ 𝑉 ) |
| 3 |
|
oms.r |
⊢ ( 𝜑 → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
| 4 |
|
omsmon.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 5 |
|
omsmon.b |
⊢ ( 𝜑 → 𝐵 ⊆ ∪ 𝑄 ) |
| 6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 dom 𝑅 ) → 𝐴 ⊆ 𝐵 ) |
| 7 |
|
sstr2 |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ ∪ 𝑧 → 𝐴 ⊆ ∪ 𝑧 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 dom 𝑅 ) → ( 𝐵 ⊆ ∪ 𝑧 → 𝐴 ⊆ ∪ 𝑧 ) ) |
| 9 |
8
|
anim1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 dom 𝑅 ) → ( ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) → ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) ) ) |
| 10 |
9
|
ss2rabdv |
⊢ ( 𝜑 → { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) |
| 11 |
|
resmpt |
⊢ ( { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } → ( ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ↾ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ↾ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ) |
| 13 |
|
resss |
⊢ ( ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ↾ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ⊆ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) |
| 14 |
12 13
|
eqsstrrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ⊆ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ) |
| 15 |
|
rnss |
⊢ ( ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ⊆ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ⊆ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ⊆ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ) |
| 17 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
| 18 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ⊆ 𝒫 dom 𝑅 |
| 19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) |
| 20 |
18 19
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ 𝒫 dom 𝑅 ) |
| 21 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 dom 𝑅 → 𝑥 ⊆ dom 𝑅 ) |
| 22 |
20 21
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ⊆ dom 𝑅 ) |
| 23 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝑅 = 𝑄 ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → dom 𝑅 = 𝑄 ) |
| 25 |
22 24
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ⊆ 𝑄 ) |
| 26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
| 27 |
25 26
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑄 ) |
| 28 |
17 27
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 29 |
28
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) → ∀ 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 30 |
|
vex |
⊢ 𝑥 ∈ V |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑥 |
| 32 |
31
|
esumcl |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 33 |
30 32
|
mpan |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) → Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 34 |
29 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) → Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 35 |
34
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 36 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) |
| 37 |
36
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ⊆ ( 0 [,] +∞ ) ) |
| 38 |
35 37
|
syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) ⊆ ( 0 [,] +∞ ) ) |
| 39 |
16 38
|
xrge0infssd |
⊢ ( 𝜑 → inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ≤ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) |
| 40 |
4 5
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑄 ) |
| 41 |
|
omsfval |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) |
| 42 |
2 3 40 41
|
syl3anc |
⊢ ( 𝜑 → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) |
| 43 |
|
omsfval |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐵 ⊆ ∪ 𝑄 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) |
| 44 |
2 3 5 43
|
syl3anc |
⊢ ( 𝜑 → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑦 ∈ 𝑥 ( 𝑅 ‘ 𝑦 ) ) , ( 0 [,] +∞ ) , < ) ) |
| 45 |
39 42 44
|
3brtr4d |
⊢ ( 𝜑 → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) ≤ ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 ) ) |
| 46 |
1
|
fveq1i |
⊢ ( 𝑀 ‘ 𝐴 ) = ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) |
| 47 |
1
|
fveq1i |
⊢ ( 𝑀 ‘ 𝐵 ) = ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 ) |
| 48 |
45 46 47
|
3brtr4g |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ 𝐵 ) ) |