| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oms.m | ⊢ 𝑀  =  ( toOMeas ‘ 𝑅 ) | 
						
							| 2 |  | oms.o | ⊢ ( 𝜑  →  𝑄  ∈  𝑉 ) | 
						
							| 3 |  | oms.r | ⊢ ( 𝜑  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 4 |  | omsmon.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 5 |  | omsmon.b | ⊢ ( 𝜑  →  𝐵  ⊆  ∪  𝑄 ) | 
						
							| 6 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  dom  𝑅 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 7 |  | sstr2 | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐵  ⊆  ∪  𝑧  →  𝐴  ⊆  ∪  𝑧 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  dom  𝑅 )  →  ( 𝐵  ⊆  ∪  𝑧  →  𝐴  ⊆  ∪  𝑧 ) ) | 
						
							| 9 | 8 | anim1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  dom  𝑅 )  →  ( ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω )  →  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) ) ) | 
						
							| 10 | 9 | ss2rabdv | ⊢ ( 𝜑  →  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ) | 
						
							| 11 |  | resmpt | ⊢ ( { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  →  ( ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ↾  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  =  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ↾  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  =  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 13 |  | resss | ⊢ ( ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ↾  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ⊆  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 14 | 12 13 | eqsstrrdi | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ⊆  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 15 |  | rnss | ⊢ ( ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ⊆  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ⊆  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ⊆  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 17 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 18 |  | ssrab2 | ⊢ { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ⊆  𝒫  dom  𝑅 | 
						
							| 19 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ) | 
						
							| 20 | 18 19 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  𝑥  ∈  𝒫  dom  𝑅 ) | 
						
							| 21 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  dom  𝑅  →  𝑥  ⊆  dom  𝑅 ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  𝑥  ⊆  dom  𝑅 ) | 
						
							| 23 | 3 | fdmd | ⊢ ( 𝜑  →  dom  𝑅  =  𝑄 ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  dom  𝑅  =  𝑄 ) | 
						
							| 25 | 22 24 | sseqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  𝑥  ⊆  𝑄 ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑥 ) | 
						
							| 27 | 25 26 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑄 ) | 
						
							| 28 | 17 27 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 29 | 28 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  →  ∀ 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 30 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑦 𝑥 | 
						
							| 32 | 31 | esumcl | ⊢ ( ( 𝑥  ∈  V  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 33 | 30 32 | mpan | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ )  →  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 34 | 29 33 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } )  →  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 35 | 34 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  =  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 37 | 36 | rnmptss | ⊢ ( ∀ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 )  ∈  ( 0 [,] +∞ )  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 38 | 35 37 | syl | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 39 | 16 38 | xrge0infssd | ⊢ ( 𝜑  →  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  )  ≤  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 40 | 4 5 | sstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ∪  𝑄 ) | 
						
							| 41 |  | omsfval | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 42 | 2 3 40 41 | syl3anc | ⊢ ( 𝜑  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 43 |  | omsfval | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐵  ⊆  ∪  𝑄 )  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 44 | 2 3 5 43 | syl3anc | ⊢ ( 𝜑  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐵  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑦  ∈  𝑥 ( 𝑅 ‘ 𝑦 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 45 | 39 42 44 | 3brtr4d | ⊢ ( 𝜑  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 )  ≤  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 ) ) | 
						
							| 46 | 1 | fveq1i | ⊢ ( 𝑀 ‘ 𝐴 )  =  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) | 
						
							| 47 | 1 | fveq1i | ⊢ ( 𝑀 ‘ 𝐵 )  =  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐵 ) | 
						
							| 48 | 45 46 47 | 3brtr4g | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ≤  ( 𝑀 ‘ 𝐵 ) ) |