Step |
Hyp |
Ref |
Expression |
1 |
|
oms.m |
⊢ 𝑀 = ( toOMeas ‘ 𝑅 ) |
2 |
|
oms.o |
⊢ ( 𝜑 → 𝑄 ∈ 𝑉 ) |
3 |
|
oms.r |
⊢ ( 𝜑 → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
4 |
|
omssubaddlem.a |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑄 ) |
5 |
|
omssubaddlem.m |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) |
6 |
|
omssubaddlem.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
7 |
6
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
8 |
5 7
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ∈ ℝ ) |
9 |
8
|
rexrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ∈ ℝ* ) |
10 |
|
omsf |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → ( toOMeas ‘ 𝑅 ) : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |
11 |
2 3 10
|
syl2anc |
⊢ ( 𝜑 → ( toOMeas ‘ 𝑅 ) : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |
12 |
1
|
feq1i |
⊢ ( 𝑀 : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ↔ ( toOMeas ‘ 𝑅 ) : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |
13 |
11 12
|
sylibr |
⊢ ( 𝜑 → 𝑀 : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |
14 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝑅 = 𝑄 ) |
15 |
14
|
unieqd |
⊢ ( 𝜑 → ∪ dom 𝑅 = ∪ 𝑄 ) |
16 |
4 15
|
sseqtrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ dom 𝑅 ) |
17 |
2
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑄 ∈ V ) |
18 |
4 17
|
jca |
⊢ ( 𝜑 → ( 𝐴 ⊆ ∪ 𝑄 ∧ ∪ 𝑄 ∈ V ) ) |
19 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ∪ 𝑄 ∧ ∪ 𝑄 ∈ V ) → 𝐴 ∈ V ) |
20 |
|
elpwg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ∪ dom 𝑅 ↔ 𝐴 ⊆ ∪ dom 𝑅 ) ) |
21 |
18 19 20
|
3syl |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝒫 ∪ dom 𝑅 ↔ 𝐴 ⊆ ∪ dom 𝑅 ) ) |
22 |
16 21
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) |
23 |
13 22
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
24 |
|
elxrge0 |
⊢ ( ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( 𝑀 ‘ 𝐴 ) ) ) |
25 |
24
|
simprbi |
⊢ ( ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑀 ‘ 𝐴 ) ) |
26 |
23 25
|
syl |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 ‘ 𝐴 ) ) |
27 |
6
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ 𝐸 ) |
28 |
5 7 26 27
|
addge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) |
29 |
|
elxrge0 |
⊢ ( ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ∈ ( 0 [,] +∞ ) ↔ ( ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ∈ ℝ* ∧ 0 ≤ ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ) |
30 |
9 28 29
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ∈ ( 0 [,] +∞ ) ) |
31 |
1
|
fveq1i |
⊢ ( 𝑀 ‘ 𝐴 ) = ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) |
32 |
|
omsfval |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) |
33 |
2 3 4 32
|
syl3anc |
⊢ ( 𝜑 → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) |
34 |
31 33
|
eqtr2id |
⊢ ( 𝜑 → inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) = ( 𝑀 ‘ 𝐴 ) ) |
35 |
5 6
|
ltaddrpd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) |
36 |
34 35
|
eqbrtrd |
⊢ ( 𝜑 → inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) |
37 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
38 |
|
xrltso |
⊢ < Or ℝ* |
39 |
|
soss |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] +∞ ) ) ) |
40 |
37 38 39
|
mp2 |
⊢ < Or ( 0 [,] +∞ ) |
41 |
40
|
a1i |
⊢ ( 𝜑 → < Or ( 0 [,] +∞ ) ) |
42 |
|
omscl |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ⊆ ( 0 [,] +∞ ) ) |
43 |
2 3 22 42
|
syl3anc |
⊢ ( 𝜑 → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ⊆ ( 0 [,] +∞ ) ) |
44 |
|
xrge0infss |
⊢ ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ⊆ ( 0 [,] +∞ ) → ∃ 𝑒 ∈ ( 0 [,] +∞ ) ( ∀ 𝑡 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬ 𝑡 < 𝑒 ∧ ∀ 𝑡 ∈ ( 0 [,] +∞ ) ( 𝑒 < 𝑡 → ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < 𝑡 ) ) ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → ∃ 𝑒 ∈ ( 0 [,] +∞ ) ( ∀ 𝑡 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬ 𝑡 < 𝑒 ∧ ∀ 𝑡 ∈ ( 0 [,] +∞ ) ( 𝑒 < 𝑡 → ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < 𝑡 ) ) ) |
46 |
41 45
|
infglb |
⊢ ( 𝜑 → ( ( ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ∈ ( 0 [,] +∞ ) ∧ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) → ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ) |
47 |
30 36 46
|
mp2and |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) |
48 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) |
49 |
|
esumex |
⊢ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∈ V |
50 |
48 49
|
elrnmpti |
⊢ ( 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ↔ ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) |
51 |
50
|
anbi1i |
⊢ ( ( 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ↔ ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ) |
52 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ↔ ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ) |
53 |
51 52
|
bitr4i |
⊢ ( ( 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ↔ ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ) |
54 |
53
|
exbii |
⊢ ( ∃ 𝑢 ( 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ↔ ∃ 𝑢 ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ) |
55 |
|
df-rex |
⊢ ( ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ↔ ∃ 𝑢 ( 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ) |
56 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ∃ 𝑢 ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ↔ ∃ 𝑢 ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ) |
57 |
54 55 56
|
3bitr4i |
⊢ ( ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ↔ ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ∃ 𝑢 ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ) |
58 |
|
breq1 |
⊢ ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) → ( 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ↔ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) ) |
59 |
58
|
biimpa |
⊢ ( ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) → Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) |
60 |
59
|
exlimiv |
⊢ ( ∃ 𝑢 ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) → Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) |
61 |
60
|
reximi |
⊢ ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ∃ 𝑢 ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) |
62 |
57 61
|
sylbi |
⊢ ( ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) |
63 |
47 62
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + 𝐸 ) ) |