| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oms.m | ⊢ 𝑀  =  ( toOMeas ‘ 𝑅 ) | 
						
							| 2 |  | oms.o | ⊢ ( 𝜑  →  𝑄  ∈  𝑉 ) | 
						
							| 3 |  | oms.r | ⊢ ( 𝜑  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 4 |  | omssubaddlem.a | ⊢ ( 𝜑  →  𝐴  ⊆  ∪  𝑄 ) | 
						
							| 5 |  | omssubaddlem.m | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 6 |  | omssubaddlem.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 7 | 6 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 8 | 5 7 | readdcld | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 )  ∈  ℝ ) | 
						
							| 9 | 8 | rexrd | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 )  ∈  ℝ* ) | 
						
							| 10 |  | omsf | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  →  ( toOMeas ‘ 𝑅 ) : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 11 | 2 3 10 | syl2anc | ⊢ ( 𝜑  →  ( toOMeas ‘ 𝑅 ) : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 12 | 1 | feq1i | ⊢ ( 𝑀 : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ )  ↔  ( toOMeas ‘ 𝑅 ) : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( 𝜑  →  𝑀 : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 14 | 3 | fdmd | ⊢ ( 𝜑  →  dom  𝑅  =  𝑄 ) | 
						
							| 15 | 14 | unieqd | ⊢ ( 𝜑  →  ∪  dom  𝑅  =  ∪  𝑄 ) | 
						
							| 16 | 4 15 | sseqtrrd | ⊢ ( 𝜑  →  𝐴  ⊆  ∪  dom  𝑅 ) | 
						
							| 17 | 2 | uniexd | ⊢ ( 𝜑  →  ∪  𝑄  ∈  V ) | 
						
							| 18 | 4 17 | jca | ⊢ ( 𝜑  →  ( 𝐴  ⊆  ∪  𝑄  ∧  ∪  𝑄  ∈  V ) ) | 
						
							| 19 |  | ssexg | ⊢ ( ( 𝐴  ⊆  ∪  𝑄  ∧  ∪  𝑄  ∈  V )  →  𝐴  ∈  V ) | 
						
							| 20 |  | elpwg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  𝒫  ∪  dom  𝑅  ↔  𝐴  ⊆  ∪  dom  𝑅 ) ) | 
						
							| 21 | 18 19 20 | 3syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝒫  ∪  dom  𝑅  ↔  𝐴  ⊆  ∪  dom  𝑅 ) ) | 
						
							| 22 | 16 21 | mpbird | ⊢ ( 𝜑  →  𝐴  ∈  𝒫  ∪  dom  𝑅 ) | 
						
							| 23 | 13 22 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 24 |  | elxrge0 | ⊢ ( ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝑀 ‘ 𝐴 )  ∈  ℝ*  ∧  0  ≤  ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 25 | 24 | simprbi | ⊢ ( ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ )  →  0  ≤  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 26 | 23 25 | syl | ⊢ ( 𝜑  →  0  ≤  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 27 | 6 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝐸 ) | 
						
							| 28 | 5 7 26 27 | addge0d | ⊢ ( 𝜑  →  0  ≤  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) | 
						
							| 29 |  | elxrge0 | ⊢ ( ( ( 𝑀 ‘ 𝐴 )  +  𝐸 )  ∈  ( 0 [,] +∞ )  ↔  ( ( ( 𝑀 ‘ 𝐴 )  +  𝐸 )  ∈  ℝ*  ∧  0  ≤  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) ) | 
						
							| 30 | 9 28 29 | sylanbrc | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 31 | 1 | fveq1i | ⊢ ( 𝑀 ‘ 𝐴 )  =  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) | 
						
							| 32 |  | omsfval | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 33 | 2 3 4 32 | syl3anc | ⊢ ( 𝜑  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 34 | 31 33 | eqtr2id | ⊢ ( 𝜑  →  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  )  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 35 | 5 6 | ltaddrpd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) | 
						
							| 36 | 34 35 | eqbrtrd | ⊢ ( 𝜑  →  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  )  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) | 
						
							| 37 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 38 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 39 |  | soss | ⊢ ( ( 0 [,] +∞ )  ⊆  ℝ*  →  (  <   Or  ℝ*  →   <   Or  ( 0 [,] +∞ ) ) ) | 
						
							| 40 | 37 38 39 | mp2 | ⊢  <   Or  ( 0 [,] +∞ ) | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →   <   Or  ( 0 [,] +∞ ) ) | 
						
							| 42 |  | omscl | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 43 | 2 3 22 42 | syl3anc | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 44 |  | xrge0infss | ⊢ ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ⊆  ( 0 [,] +∞ )  →  ∃ 𝑒  ∈  ( 0 [,] +∞ ) ( ∀ 𝑡  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬  𝑡  <  𝑒  ∧  ∀ 𝑡  ∈  ( 0 [,] +∞ ) ( 𝑒  <  𝑡  →  ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  𝑡 ) ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝜑  →  ∃ 𝑒  ∈  ( 0 [,] +∞ ) ( ∀ 𝑡  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬  𝑡  <  𝑒  ∧  ∀ 𝑡  ∈  ( 0 [,] +∞ ) ( 𝑒  <  𝑡  →  ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  𝑡 ) ) ) | 
						
							| 46 | 41 45 | infglb | ⊢ ( 𝜑  →  ( ( ( ( 𝑀 ‘ 𝐴 )  +  𝐸 )  ∈  ( 0 [,] +∞ )  ∧  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  )  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) )  →  ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) ) | 
						
							| 47 | 30 36 46 | mp2and | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) | 
						
							| 48 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  =  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 49 |  | esumex | ⊢ Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∈  V | 
						
							| 50 | 48 49 | elrnmpti | ⊢ ( 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ↔  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 51 | 50 | anbi1i | ⊢ ( ( 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) )  ↔  ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) ) | 
						
							| 52 |  | r19.41v | ⊢ ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) )  ↔  ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) ) | 
						
							| 53 | 51 52 | bitr4i | ⊢ ( ( 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) )  ↔  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) ) | 
						
							| 54 | 53 | exbii | ⊢ ( ∃ 𝑢 ( 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) )  ↔  ∃ 𝑢 ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) ) | 
						
							| 55 |  | df-rex | ⊢ ( ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 )  ↔  ∃ 𝑢 ( 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) ) | 
						
							| 56 |  | rexcom4 | ⊢ ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ∃ 𝑢 ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) )  ↔  ∃ 𝑢 ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) ) | 
						
							| 57 | 54 55 56 | 3bitr4i | ⊢ ( ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 )  ↔  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ∃ 𝑢 ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) ) | 
						
							| 58 |  | breq1 | ⊢ ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  →  ( 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 )  ↔  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) ) | 
						
							| 59 | 58 | biimpa | ⊢ ( ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) )  →  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) | 
						
							| 60 | 59 | exlimiv | ⊢ ( ∃ 𝑢 ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) )  →  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) | 
						
							| 61 | 60 | reximi | ⊢ ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ∃ 𝑢 ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) )  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) | 
						
							| 62 | 57 61 | sylbi | ⊢ ( ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 )  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) | 
						
							| 63 | 47 62 | syl | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  𝐸 ) ) |