| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oms.m | ⊢ 𝑀  =  ( toOMeas ‘ 𝑅 ) | 
						
							| 2 |  | oms.o | ⊢ ( 𝜑  →  𝑄  ∈  𝑉 ) | 
						
							| 3 |  | oms.r | ⊢ ( 𝜑  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 4 |  | omssubadd.a | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝐴  ⊆  ∪  𝑄 ) | 
						
							| 5 |  | omssubadd.b | ⊢ ( 𝜑  →  𝑋  ≼  ω ) | 
						
							| 6 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 7 | 6 | ensymi | ⊢ ω  ≈  ℕ | 
						
							| 8 |  | domentr | ⊢ ( ( 𝑋  ≼  ω  ∧  ω  ≈  ℕ )  →  𝑋  ≼  ℕ ) | 
						
							| 9 | 5 7 8 | sylancl | ⊢ ( 𝜑  →  𝑋  ≼  ℕ ) | 
						
							| 10 |  | brdomi | ⊢ ( 𝑋  ≼  ℕ  →  ∃ 𝑓 𝑓 : 𝑋 –1-1→ ℕ ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  ∃ 𝑓 𝑓 : 𝑋 –1-1→ ℕ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  ∃ 𝑓 𝑓 : 𝑋 –1-1→ ℕ ) | 
						
							| 13 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  𝜑 ) | 
						
							| 14 |  | ctex | ⊢ ( 𝑋  ≼  ω  →  𝑋  ∈  V ) | 
						
							| 15 | 5 14 | syl | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 16 | 13 15 | syl | ⊢ ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  𝑋  ∈  V ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑦 𝑋 | 
						
							| 19 | 18 | nfesum1 | ⊢ Ⅎ 𝑦 Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑦 ℝ | 
						
							| 21 | 19 20 | nfel | ⊢ Ⅎ 𝑦 Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ | 
						
							| 22 | 17 21 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 23 |  | nfv | ⊢ Ⅎ 𝑦 𝑓 : 𝑋 –1-1→ ℕ | 
						
							| 24 | 22 23 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ ) | 
						
							| 25 |  | nfv | ⊢ Ⅎ 𝑦 𝑒  ∈  ℝ+ | 
						
							| 26 | 24 25 | nfan | ⊢ Ⅎ 𝑦 ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ ) | 
						
							| 27 | 13 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  𝜑 ) | 
						
							| 28 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  𝑦  ∈  𝑋 ) | 
						
							| 29 | 15 | adantr | ⊢ ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  𝑋  ∈  V ) | 
						
							| 30 |  | omsf | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  →  ( toOMeas ‘ 𝑅 ) : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 31 | 1 | feq1i | ⊢ ( 𝑀 : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ )  ↔  ( toOMeas ‘ 𝑅 ) : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 32 | 30 31 | sylibr | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  →  𝑀 : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 33 | 2 3 32 | syl2anc | ⊢ ( 𝜑  →  𝑀 : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝑀 : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 35 | 3 | fdmd | ⊢ ( 𝜑  →  dom  𝑅  =  𝑄 ) | 
						
							| 36 | 35 | unieqd | ⊢ ( 𝜑  →  ∪  dom  𝑅  =  ∪  𝑄 ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ∪  dom  𝑅  =  ∪  𝑄 ) | 
						
							| 38 | 4 37 | sseqtrrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝐴  ⊆  ∪  dom  𝑅 ) | 
						
							| 39 | 2 | uniexd | ⊢ ( 𝜑  →  ∪  𝑄  ∈  V ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ∪  𝑄  ∈  V ) | 
						
							| 41 |  | ssexg | ⊢ ( ( 𝐴  ⊆  ∪  𝑄  ∧  ∪  𝑄  ∈  V )  →  𝐴  ∈  V ) | 
						
							| 42 | 4 40 41 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝐴  ∈  V ) | 
						
							| 43 |  | elpwg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  𝒫  ∪  dom  𝑅  ↔  𝐴  ⊆  ∪  dom  𝑅 ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴  ∈  𝒫  ∪  dom  𝑅  ↔  𝐴  ⊆  ∪  dom  𝑅 ) ) | 
						
							| 45 | 38 44 | mpbird | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝐴  ∈  𝒫  ∪  dom  𝑅 ) | 
						
							| 46 | 34 45 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 47 | 46 | adantlr | ⊢ ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 49 | 22 29 47 48 | esumcvgre | ⊢ ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 50 | 49 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 51 | 50 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 52 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 53 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  𝑒  ∈  ℝ+ ) | 
						
							| 54 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 55 | 54 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  2  ∈  ℝ+ ) | 
						
							| 56 |  | df-f1 | ⊢ ( 𝑓 : 𝑋 –1-1→ ℕ  ↔  ( 𝑓 : 𝑋 ⟶ ℕ  ∧  Fun  ◡ 𝑓 ) ) | 
						
							| 57 | 56 | simplbi | ⊢ ( 𝑓 : 𝑋 –1-1→ ℕ  →  𝑓 : 𝑋 ⟶ ℕ ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  𝑓 : 𝑋 ⟶ ℕ ) | 
						
							| 59 | 58 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑓 ‘ 𝑦 )  ∈  ℕ ) | 
						
							| 60 | 59 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑓 ‘ 𝑦 )  ∈  ℤ ) | 
						
							| 61 | 55 60 | rpexpcld | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) )  ∈  ℝ+ ) | 
						
							| 62 | 61 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) )  ∈  ℝ+ ) | 
						
							| 63 | 53 62 | rpdivcld | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ+ ) | 
						
							| 64 | 52 63 | sselid | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 65 | 64 | adantl3r | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 66 |  | rexadd | ⊢ ( ( ( 𝑀 ‘ 𝐴 )  ∈  ℝ  ∧  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ )  →  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  =  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 67 | 51 65 66 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  =  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 68 | 13 46 | sylan | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 69 |  | dfrp2 | ⊢ ℝ+  =  ( 0 (,) +∞ ) | 
						
							| 70 |  | ioossicc | ⊢ ( 0 (,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 71 | 69 70 | eqsstri | ⊢ ℝ+  ⊆  ( 0 [,] +∞ ) | 
						
							| 72 | 71 63 | sselid | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 73 | 72 | adantl3r | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 74 | 68 73 | xrge0addcld | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 75 | 67 74 | eqeltrrd | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 76 | 52 53 | sselid | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  𝑒  ∈  ℝ ) | 
						
							| 77 | 76 | adantl3r | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  𝑒  ∈  ℝ ) | 
						
							| 78 | 52 61 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 79 | 78 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 80 | 79 | adantl3r | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 81 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  𝑒  ∈  ℝ+ ) | 
						
							| 82 | 81 | rpgt0d | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  0  <  𝑒 ) | 
						
							| 83 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 84 | 83 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  2  ∈  ℝ ) | 
						
							| 85 | 60 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑓 ‘ 𝑦 )  ∈  ℤ ) | 
						
							| 86 | 85 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑓 ‘ 𝑦 )  ∈  ℤ ) | 
						
							| 87 |  | 2pos | ⊢ 0  <  2 | 
						
							| 88 | 87 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  0  <  2 ) | 
						
							| 89 |  | expgt0 | ⊢ ( ( 2  ∈  ℝ  ∧  ( 𝑓 ‘ 𝑦 )  ∈  ℤ  ∧  0  <  2 )  →  0  <  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 90 | 84 86 88 89 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  0  <  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 91 | 77 80 82 90 | divgt0d | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  0  <  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 92 | 65 51 | ltaddposd | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 0  <  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ↔  ( 𝑀 ‘ 𝐴 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 93 | 91 92 | mpbid | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 94 | 1 | fveq1i | ⊢ ( 𝑀 ‘ 𝐴 )  =  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) | 
						
							| 95 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝑄  ∈  𝑉 ) | 
						
							| 96 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 97 |  | omsfval | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ⊆  ∪  𝑄 )  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 98 | 95 96 4 97 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 99 | 94 98 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 100 | 13 99 | sylan | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 101 | 100 | eqcomd | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  )  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 102 | 101 | breq1d | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ( 𝑀 ‘ 𝐴 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 103 | 93 102 | mpbird | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 104 | 75 103 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ( 0 [,] +∞ )  ∧  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 105 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 106 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 107 |  | soss | ⊢ ( ( 0 [,] +∞ )  ⊆  ℝ*  →  (  <   Or  ℝ*  →   <   Or  ( 0 [,] +∞ ) ) ) | 
						
							| 108 | 105 106 107 | mp2 | ⊢  <   Or  ( 0 [,] +∞ ) | 
						
							| 109 |  | biid | ⊢ (  <   Or  ( 0 [,] +∞ )  ↔   <   Or  ( 0 [,] +∞ ) ) | 
						
							| 110 | 108 109 | mpbi | ⊢  <   Or  ( 0 [,] +∞ ) | 
						
							| 111 | 110 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →   <   Or  ( 0 [,] +∞ ) ) | 
						
							| 112 |  | omscl | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  𝐴  ∈  𝒫  ∪  dom  𝑅 )  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 113 | 95 96 45 112 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 114 |  | xrge0infss | ⊢ ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ⊆  ( 0 [,] +∞ )  →  ∃ 𝑣  ∈  ( 0 [,] +∞ ) ( ∀ ℎ  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬  ℎ  <  𝑣  ∧  ∀ ℎ  ∈  ( 0 [,] +∞ ) ( 𝑣  <  ℎ  →  ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ℎ ) ) ) | 
						
							| 115 | 113 114 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ∃ 𝑣  ∈  ( 0 [,] +∞ ) ( ∀ ℎ  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬  ℎ  <  𝑣  ∧  ∀ ℎ  ∈  ( 0 [,] +∞ ) ( 𝑣  <  ℎ  →  ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ℎ ) ) ) | 
						
							| 116 | 111 115 | infglb | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( ( ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ( 0 [,] +∞ )  ∧  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 117 | 116 | imp | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ( 0 [,] +∞ )  ∧  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 118 | 27 28 104 117 | syl21anc | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 119 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  =  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 120 |  | esumex | ⊢ Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∈  V | 
						
							| 121 | 119 120 | elrnmpti | ⊢ ( 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ↔  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 122 | 121 | anbi1i | ⊢ ( ( 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  ↔  ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 123 |  | r19.41v | ⊢ ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  ↔  ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 124 | 122 123 | bitr4i | ⊢ ( ( 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  ↔  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 125 | 124 | exbii | ⊢ ( ∃ 𝑢 ( 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  ↔  ∃ 𝑢 ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 126 |  | df-rex | ⊢ ( ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ∃ 𝑢 ( 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 127 |  | rexcom4 | ⊢ ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ∃ 𝑢 ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  ↔  ∃ 𝑢 ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 128 | 125 126 127 | 3bitr4i | ⊢ ( ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ∃ 𝑢 ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 129 |  | breq1 | ⊢ ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  →  ( 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 130 |  | idd | ⊢ ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  →  ( Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  →  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 131 | 129 130 | sylbid | ⊢ ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  →  ( 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  →  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 132 | 131 | imp | ⊢ ( ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 133 | 132 | exlimiv | ⊢ ( ∃ 𝑢 ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 134 | 133 | reximi | ⊢ ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ∃ 𝑢 ( 𝑢  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  ∧  𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 135 | 128 134 | sylbi | ⊢ ( ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 136 | 118 135 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 137 |  | simpr | ⊢ ( ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω )  →  𝑧  ≼  ω ) | 
						
							| 138 | 137 | a1i | ⊢ ( 𝑧  ∈  𝒫  dom  𝑅  →  ( ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω )  →  𝑧  ≼  ω ) ) | 
						
							| 139 | 138 | ss2rabi | ⊢ { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } | 
						
							| 140 |  | rexss | ⊢ ( { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 141 | 139 140 | ax-mp | ⊢ ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 142 |  | unieq | ⊢ ( 𝑧  =  𝑥  →  ∪  𝑧  =  ∪  𝑥 ) | 
						
							| 143 | 142 | sseq2d | ⊢ ( 𝑧  =  𝑥  →  ( 𝐴  ⊆  ∪  𝑧  ↔  𝐴  ⊆  ∪  𝑥 ) ) | 
						
							| 144 |  | breq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ≼  ω  ↔  𝑥  ≼  ω ) ) | 
						
							| 145 | 143 144 | anbi12d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω )  ↔  ( 𝐴  ⊆  ∪  𝑥  ∧  𝑥  ≼  ω ) ) ) | 
						
							| 146 | 145 | elrab | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↔  ( 𝑥  ∈  𝒫  dom  𝑅  ∧  ( 𝐴  ⊆  ∪  𝑥  ∧  𝑥  ≼  ω ) ) ) | 
						
							| 147 | 146 | simprbi | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  →  ( 𝐴  ⊆  ∪  𝑥  ∧  𝑥  ≼  ω ) ) | 
						
							| 148 | 147 | simpld | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  →  𝐴  ⊆  ∪  𝑥 ) | 
						
							| 149 | 148 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  →  𝐴  ⊆  ∪  𝑥 ) ) | 
						
							| 150 | 149 | anim1d | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ( 𝐴  ⊆  ∪  𝑥  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 151 | 150 | reximdv | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ( 𝐴  ⊆  ∪  𝑥  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 152 | 141 151 | biimtrid | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ( 𝐴  ⊆  ∪  𝑥  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 153 | 136 152 | mpd | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ( 𝐴  ⊆  ∪  𝑥  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 154 | 153 | ex | ⊢ ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ( 𝑦  ∈  𝑋  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ( 𝐴  ⊆  ∪  𝑥  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 155 | 26 154 | ralrimi | ⊢ ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ∀ 𝑦  ∈  𝑋 ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ( 𝐴  ⊆  ∪  𝑥  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 156 |  | unieq | ⊢ ( 𝑥  =  ( 𝑔 ‘ 𝑦 )  →  ∪  𝑥  =  ∪  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 157 | 156 | sseq2d | ⊢ ( 𝑥  =  ( 𝑔 ‘ 𝑦 )  →  ( 𝐴  ⊆  ∪  𝑥  ↔  𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 158 |  | esumeq1 | ⊢ ( 𝑥  =  ( 𝑔 ‘ 𝑦 )  →  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  =  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 159 | 158 | breq1d | ⊢ ( 𝑥  =  ( 𝑔 ‘ 𝑦 )  →  ( Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 160 | 157 159 | anbi12d | ⊢ ( 𝑥  =  ( 𝑔 ‘ 𝑦 )  →  ( ( 𝐴  ⊆  ∪  𝑥  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  ↔  ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 161 | 160 | ac6sg | ⊢ ( 𝑋  ∈  V  →  ( ∀ 𝑦  ∈  𝑋 ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ( 𝐴  ⊆  ∪  𝑥  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ∃ 𝑔 ( 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) ) | 
						
							| 162 | 161 | imp | ⊢ ( ( 𝑋  ∈  V  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ( 𝐴  ⊆  ∪  𝑥  ∧  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∃ 𝑔 ( 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 163 | 16 155 162 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ∃ 𝑔 ( 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 164 | 13 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝜑 ) | 
						
							| 165 | 38 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑋 𝐴  ⊆  ∪  dom  𝑅 ) | 
						
							| 166 |  | iunss | ⊢ ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  dom  𝑅  ↔  ∀ 𝑦  ∈  𝑋 𝐴  ⊆  ∪  dom  𝑅 ) | 
						
							| 167 | 165 166 | sylibr | ⊢ ( 𝜑  →  ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  dom  𝑅 ) | 
						
							| 168 | 42 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑋 𝐴  ∈  V ) | 
						
							| 169 |  | iunexg | ⊢ ( ( 𝑋  ∈  V  ∧  ∀ 𝑦  ∈  𝑋 𝐴  ∈  V )  →  ∪  𝑦  ∈  𝑋 𝐴  ∈  V ) | 
						
							| 170 | 15 168 169 | syl2anc | ⊢ ( 𝜑  →  ∪  𝑦  ∈  𝑋 𝐴  ∈  V ) | 
						
							| 171 |  | elpwg | ⊢ ( ∪  𝑦  ∈  𝑋 𝐴  ∈  V  →  ( ∪  𝑦  ∈  𝑋 𝐴  ∈  𝒫  ∪  dom  𝑅  ↔  ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  dom  𝑅 ) ) | 
						
							| 172 | 170 171 | syl | ⊢ ( 𝜑  →  ( ∪  𝑦  ∈  𝑋 𝐴  ∈  𝒫  ∪  dom  𝑅  ↔  ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  dom  𝑅 ) ) | 
						
							| 173 | 167 172 | mpbird | ⊢ ( 𝜑  →  ∪  𝑦  ∈  𝑋 𝐴  ∈  𝒫  ∪  dom  𝑅 ) | 
						
							| 174 | 33 173 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 175 | 105 174 | sselid | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ∈  ℝ* ) | 
						
							| 176 | 164 175 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ∈  ℝ* ) | 
						
							| 177 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 178 | 29 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝑋  ∈  V ) | 
						
							| 179 | 177 178 | fexd | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝑔  ∈  V ) | 
						
							| 180 |  | rnexg | ⊢ ( 𝑔  ∈  V  →  ran  𝑔  ∈  V ) | 
						
							| 181 |  | uniexg | ⊢ ( ran  𝑔  ∈  V  →  ∪  ran  𝑔  ∈  V ) | 
						
							| 182 | 179 180 181 | 3syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∪  ran  𝑔  ∈  V ) | 
						
							| 183 |  | simp-5l | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝜑 ) | 
						
							| 184 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑐  ∈  ∪  ran  𝑔 )  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 185 |  | frn | ⊢ ( 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  ran  𝑔  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 186 |  | ssrab2 | ⊢ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  ⊆  𝒫  dom  𝑅 | 
						
							| 187 | 185 186 | sstrdi | ⊢ ( 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  ran  𝑔  ⊆  𝒫  dom  𝑅 ) | 
						
							| 188 | 187 | unissd | ⊢ ( 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  ∪  ran  𝑔  ⊆  ∪  𝒫  dom  𝑅 ) | 
						
							| 189 |  | unipw | ⊢ ∪  𝒫  dom  𝑅  =  dom  𝑅 | 
						
							| 190 | 188 189 | sseqtrdi | ⊢ ( 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  ∪  ran  𝑔  ⊆  dom  𝑅 ) | 
						
							| 191 | 190 | adantl | ⊢ ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  ∪  ran  𝑔  ⊆  dom  𝑅 ) | 
						
							| 192 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  dom  𝑅  =  𝑄 ) | 
						
							| 193 | 191 192 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  ∪  ran  𝑔  ⊆  𝑄 ) | 
						
							| 194 | 193 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑐  ∈  ∪  ran  𝑔 )  →  𝑐  ∈  𝑄 ) | 
						
							| 195 | 184 194 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑐  ∈  ∪  ran  𝑔 )  →  ( 𝑅 ‘ 𝑐 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 196 | 195 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  ∀ 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 197 | 183 177 196 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∀ 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 198 |  | nfcv | ⊢ Ⅎ 𝑐 ∪  ran  𝑔 | 
						
							| 199 | 198 | esumcl | ⊢ ( ( ∪  ran  𝑔  ∈  V  ∧  ∀ 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 200 | 182 197 199 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 201 | 105 200 | sselid | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ℝ* ) | 
						
							| 202 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 203 | 202 | rexrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 204 |  | simpllr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝑒  ∈  ℝ+ ) | 
						
							| 205 | 204 | rpxrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝑒  ∈  ℝ* ) | 
						
							| 206 | 203 205 | xaddcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  𝑒 )  ∈  ℝ* ) | 
						
							| 207 | 185 | ad2antlr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ran  𝑔  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 208 |  | sstr | ⊢ ( ( ran  𝑔  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  ∧  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  ⊆  𝒫  dom  𝑅 )  →  ran  𝑔  ⊆  𝒫  dom  𝑅 ) | 
						
							| 209 | 186 208 | mpan2 | ⊢ ( ran  𝑔  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  ran  𝑔  ⊆  𝒫  dom  𝑅 ) | 
						
							| 210 |  | sspwuni | ⊢ ( ran  𝑔  ⊆  𝒫  dom  𝑅  ↔  ∪  ran  𝑔  ⊆  dom  𝑅 ) | 
						
							| 211 | 209 210 | sylib | ⊢ ( ran  𝑔  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  ∪  ran  𝑔  ⊆  dom  𝑅 ) | 
						
							| 212 | 207 211 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∪  ran  𝑔  ⊆  dom  𝑅 ) | 
						
							| 213 |  | ffn | ⊢ ( 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  𝑔  Fn  𝑋 ) | 
						
							| 214 | 213 | ad2antlr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝑔  Fn  𝑋 ) | 
						
							| 215 | 164 5 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝑋  ≼  ω ) | 
						
							| 216 |  | fnct | ⊢ ( ( 𝑔  Fn  𝑋  ∧  𝑋  ≼  ω )  →  𝑔  ≼  ω ) | 
						
							| 217 |  | rnct | ⊢ ( 𝑔  ≼  ω  →  ran  𝑔  ≼  ω ) | 
						
							| 218 | 216 217 | syl | ⊢ ( ( 𝑔  Fn  𝑋  ∧  𝑋  ≼  ω )  →  ran  𝑔  ≼  ω ) | 
						
							| 219 |  | dfss3 | ⊢ ( ran  𝑔  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  ↔  ∀ 𝑤  ∈  ran  𝑔 𝑤  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 220 | 219 | biimpi | ⊢ ( ran  𝑔  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  ∀ 𝑤  ∈  ran  𝑔 𝑤  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 221 |  | breq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧  ≼  ω  ↔  𝑤  ≼  ω ) ) | 
						
							| 222 | 221 | elrab | ⊢ ( 𝑤  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  ↔  ( 𝑤  ∈  𝒫  dom  𝑅  ∧  𝑤  ≼  ω ) ) | 
						
							| 223 | 222 | simprbi | ⊢ ( 𝑤  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  𝑤  ≼  ω ) | 
						
							| 224 | 223 | ralimi | ⊢ ( ∀ 𝑤  ∈  ran  𝑔 𝑤  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  ∀ 𝑤  ∈  ran  𝑔 𝑤  ≼  ω ) | 
						
							| 225 | 220 224 | syl | ⊢ ( ran  𝑔  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  →  ∀ 𝑤  ∈  ran  𝑔 𝑤  ≼  ω ) | 
						
							| 226 |  | unictb | ⊢ ( ( ran  𝑔  ≼  ω  ∧  ∀ 𝑤  ∈  ran  𝑔 𝑤  ≼  ω )  →  ∪  ran  𝑔  ≼  ω ) | 
						
							| 227 | 218 225 226 | syl2an | ⊢ ( ( ( 𝑔  Fn  𝑋  ∧  𝑋  ≼  ω )  ∧  ran  𝑔  ⊆  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  ∪  ran  𝑔  ≼  ω ) | 
						
							| 228 | 214 215 207 227 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∪  ran  𝑔  ≼  ω ) | 
						
							| 229 |  | ctex | ⊢ ( ∪  ran  𝑔  ≼  ω  →  ∪  ran  𝑔  ∈  V ) | 
						
							| 230 |  | elpwg | ⊢ ( ∪  ran  𝑔  ∈  V  →  ( ∪  ran  𝑔  ∈  𝒫  dom  𝑅  ↔  ∪  ran  𝑔  ⊆  dom  𝑅 ) ) | 
						
							| 231 | 228 229 230 | 3syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( ∪  ran  𝑔  ∈  𝒫  dom  𝑅  ↔  ∪  ran  𝑔  ⊆  dom  𝑅 ) ) | 
						
							| 232 | 212 231 | mpbird | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∪  ran  𝑔  ∈  𝒫  dom  𝑅 ) | 
						
							| 233 |  | simpl | ⊢ ( ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 234 | 233 | ralimi | ⊢ ( ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ∀ 𝑦  ∈  𝑋 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 235 |  | fvssunirn | ⊢ ( 𝑔 ‘ 𝑦 )  ⊆  ∪  ran  𝑔 | 
						
							| 236 | 235 | unissi | ⊢ ∪  ( 𝑔 ‘ 𝑦 )  ⊆  ∪  ∪  ran  𝑔 | 
						
							| 237 |  | sstr | ⊢ ( ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  ∪  ( 𝑔 ‘ 𝑦 )  ⊆  ∪  ∪  ran  𝑔 )  →  𝐴  ⊆  ∪  ∪  ran  𝑔 ) | 
						
							| 238 | 236 237 | mpan2 | ⊢ ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  →  𝐴  ⊆  ∪  ∪  ran  𝑔 ) | 
						
							| 239 | 238 | ralimi | ⊢ ( ∀ 𝑦  ∈  𝑋 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  →  ∀ 𝑦  ∈  𝑋 𝐴  ⊆  ∪  ∪  ran  𝑔 ) | 
						
							| 240 |  | iunss | ⊢ ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  ∪  ran  𝑔  ↔  ∀ 𝑦  ∈  𝑋 𝐴  ⊆  ∪  ∪  ran  𝑔 ) | 
						
							| 241 | 239 240 | sylibr | ⊢ ( ∀ 𝑦  ∈  𝑋 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  →  ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  ∪  ran  𝑔 ) | 
						
							| 242 | 234 241 | syl | ⊢ ( ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  ∪  ran  𝑔 ) | 
						
							| 243 | 242 | adantl | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  ∪  ran  𝑔 ) | 
						
							| 244 | 232 243 228 | jca32 | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( ∪  ran  𝑔  ∈  𝒫  dom  𝑅  ∧  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  ∪  ran  𝑔  ∧  ∪  ran  𝑔  ≼  ω ) ) ) | 
						
							| 245 |  | unieq | ⊢ ( 𝑧  =  ∪  ran  𝑔  →  ∪  𝑧  =  ∪  ∪  ran  𝑔 ) | 
						
							| 246 | 245 | sseq2d | ⊢ ( 𝑧  =  ∪  ran  𝑔  →  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ↔  ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  ∪  ran  𝑔 ) ) | 
						
							| 247 |  | breq1 | ⊢ ( 𝑧  =  ∪  ran  𝑔  →  ( 𝑧  ≼  ω  ↔  ∪  ran  𝑔  ≼  ω ) ) | 
						
							| 248 | 246 247 | anbi12d | ⊢ ( 𝑧  =  ∪  ran  𝑔  →  ( ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω )  ↔  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  ∪  ran  𝑔  ∧  ∪  ran  𝑔  ≼  ω ) ) ) | 
						
							| 249 | 248 | elrab | ⊢ ( ∪  ran  𝑔  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↔  ( ∪  ran  𝑔  ∈  𝒫  dom  𝑅  ∧  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  ∪  ran  𝑔  ∧  ∪  ran  𝑔  ≼  ω ) ) ) | 
						
							| 250 | 244 249 | sylibr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∪  ran  𝑔  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } ) | 
						
							| 251 |  | fveq2 | ⊢ ( 𝑐  =  𝑤  →  ( 𝑅 ‘ 𝑐 )  =  ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 252 | 251 | cbvesumv | ⊢ Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  =  Σ* 𝑤  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑤 ) | 
						
							| 253 |  | esumeq1 | ⊢ ( 𝑥  =  ∪  ran  𝑔  →  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 )  =  Σ* 𝑤  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 254 | 253 | rspceeqv | ⊢ ( ( ∪  ran  𝑔  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ∧  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  =  Σ* 𝑤  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑤 ) )  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 255 | 250 252 254 | sylancl | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 256 |  | esumex | ⊢ Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  V | 
						
							| 257 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  =  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 258 | 257 | elrnmpt | ⊢ ( Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  V  →  ( Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ↔  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ) | 
						
							| 259 | 256 258 | ax-mp | ⊢ ( Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ↔  ∃ 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) } Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  =  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 260 | 255 259 | sylibr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ) | 
						
							| 261 | 110 | a1i | ⊢ ( 𝜑  →   <   Or  ( 0 [,] +∞ ) ) | 
						
							| 262 |  | omscl | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  ∪  𝑦  ∈  𝑋 𝐴  ∈  𝒫  ∪  dom  𝑅 )  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 263 | 2 3 173 262 | syl3anc | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 264 |  | xrge0infss | ⊢ ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  ⊆  ( 0 [,] +∞ )  →  ∃ 𝑒  ∈  ( 0 [,] +∞ ) ( ∀ 𝑡  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬  𝑡  <  𝑒  ∧  ∀ 𝑡  ∈  ( 0 [,] +∞ ) ( 𝑒  <  𝑡  →  ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  𝑡 ) ) ) | 
						
							| 265 | 263 264 | syl | ⊢ ( 𝜑  →  ∃ 𝑒  ∈  ( 0 [,] +∞ ) ( ∀ 𝑡  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬  𝑡  <  𝑒  ∧  ∀ 𝑡  ∈  ( 0 [,] +∞ ) ( 𝑒  <  𝑡  →  ∃ 𝑢  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢  <  𝑡 ) ) ) | 
						
							| 266 | 261 265 | inflb | ⊢ ( 𝜑  →  ( Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  →  ¬  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) ) | 
						
							| 267 | 1 | fveq1i | ⊢ ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  =  ( ( toOMeas ‘ 𝑅 ) ‘ ∪  𝑦  ∈  𝑋 𝐴 ) | 
						
							| 268 | 167 36 | sseqtrd | ⊢ ( 𝜑  →  ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑄 ) | 
						
							| 269 |  | omsfval | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ )  ∧  ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑄 )  →  ( ( toOMeas ‘ 𝑅 ) ‘ ∪  𝑦  ∈  𝑋 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 270 | 2 3 268 269 | syl3anc | ⊢ ( 𝜑  →  ( ( toOMeas ‘ 𝑅 ) ‘ ∪  𝑦  ∈  𝑋 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 271 | 267 270 | eqtrid | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  =  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) | 
						
							| 272 | 271 | breq2d | ⊢ ( 𝜑  →  ( Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ↔  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) ) | 
						
							| 273 | 272 | notbid | ⊢ ( 𝜑  →  ( ¬  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ↔  ¬  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  inf ( ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) ) ,  ( 0 [,] +∞ ) ,   <  ) ) ) | 
						
							| 274 | 266 273 | sylibrd | ⊢ ( 𝜑  →  ( Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ran  ( 𝑥  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  ( ∪  𝑦  ∈  𝑋 𝐴  ⊆  ∪  𝑧  ∧  𝑧  ≼  ω ) }  ↦  Σ* 𝑤  ∈  𝑥 ( 𝑅 ‘ 𝑤 ) )  →  ¬  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 ) ) ) | 
						
							| 275 | 164 260 274 | sylc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ¬  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 ) ) | 
						
							| 276 |  | biid | ⊢ ( ¬  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ↔  ¬  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 ) ) | 
						
							| 277 | 275 276 | sylib | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ¬  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 ) ) | 
						
							| 278 |  | xrlenlt | ⊢ ( ( ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ∈  ℝ*  ∧  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ∈  ℝ* )  →  ( ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ↔  ¬  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 ) ) ) | 
						
							| 279 | 176 201 278 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ↔  ¬  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  <  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 ) ) ) | 
						
							| 280 | 277 279 | mpbird | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 ) ) | 
						
							| 281 |  | nfv | ⊢ Ⅎ 𝑦 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } | 
						
							| 282 | 26 281 | nfan | ⊢ Ⅎ 𝑦 ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 283 |  | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 284 | 282 283 | nfan | ⊢ Ⅎ 𝑦 ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 285 |  | simp-6l | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  ∧  𝑦  ∈  𝑋 )  →  𝜑 ) | 
						
							| 286 |  | simpllr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  ∧  𝑦  ∈  𝑋 )  →  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 287 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  ∧  𝑦  ∈  𝑋 )  →  𝑦  ∈  𝑋 ) | 
						
							| 288 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  𝑤  ∈  ( 𝑔 ‘ 𝑦 ) )  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 289 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  𝑤  ∈  ( 𝑔 ‘ 𝑦 ) )  →  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 290 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  𝑤  ∈  ( 𝑔 ‘ 𝑦 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 291 | 289 290 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  𝑤  ∈  ( 𝑔 ‘ 𝑦 ) )  →  ( 𝑔 ‘ 𝑦 )  ∈  { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 292 | 186 291 | sselid | ⊢ ( ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  𝑤  ∈  ( 𝑔 ‘ 𝑦 ) )  →  ( 𝑔 ‘ 𝑦 )  ∈  𝒫  dom  𝑅 ) | 
						
							| 293 | 292 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  𝑤  ∈  ( 𝑔 ‘ 𝑦 ) )  →  ( 𝑔 ‘ 𝑦 )  ⊆  dom  𝑅 ) | 
						
							| 294 | 288 293 | fssdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  𝑤  ∈  ( 𝑔 ‘ 𝑦 ) )  →  ( 𝑔 ‘ 𝑦 )  ⊆  𝑄 ) | 
						
							| 295 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  𝑤  ∈  ( 𝑔 ‘ 𝑦 ) )  →  𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 296 | 294 295 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  𝑤  ∈  ( 𝑔 ‘ 𝑦 ) )  →  𝑤  ∈  𝑄 ) | 
						
							| 297 | 288 296 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  𝑤  ∈  ( 𝑔 ‘ 𝑦 ) )  →  ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 298 | 297 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ∀ 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 299 |  | fvex | ⊢ ( 𝑔 ‘ 𝑦 )  ∈  V | 
						
							| 300 |  | nfcv | ⊢ Ⅎ 𝑤 ( 𝑔 ‘ 𝑦 ) | 
						
							| 301 | 300 | esumcl | ⊢ ( ( ( 𝑔 ‘ 𝑦 )  ∈  V  ∧  ∀ 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 302 | 299 301 | mpan | ⊢ ( ∀ 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 303 | 298 302 | syl | ⊢ ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 304 | 285 286 287 303 | syl21anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  ∧  𝑦  ∈  𝑋 )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 305 | 304 | ex | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( 𝑦  ∈  𝑋  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 306 | 284 305 | ralrimi | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∀ 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 307 | 18 | esumcl | ⊢ ( ( 𝑋  ∈  V  ∧  ∀ 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 308 | 178 306 307 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 309 | 105 308 | sselid | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ℝ* ) | 
						
							| 310 |  | nfv | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 311 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 312 |  | fniunfv | ⊢ ( 𝑔  Fn  𝑋  →  ∪  𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 )  =  ∪  ran  𝑔 ) | 
						
							| 313 | 311 213 312 | 3syl | ⊢ ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  ∪  𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 )  =  ∪  ran  𝑔 ) | 
						
							| 314 | 310 313 | esumeq1d | ⊢ ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  Σ* 𝑤  ∈  ∪  𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  =  Σ* 𝑤  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 315 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  𝑋  ∈  V ) | 
						
							| 316 | 299 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑔 ‘ 𝑦 )  ∈  V ) | 
						
							| 317 | 315 316 297 | esumiun | ⊢ ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  Σ* 𝑤  ∈  ∪  𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  Σ* 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 318 | 314 317 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  Σ* 𝑤  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑤 )  ≤  Σ* 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 319 | 13 318 | sylan | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  Σ* 𝑤  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑤 )  ≤  Σ* 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 320 | 319 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑤  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑤 )  ≤  Σ* 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 321 | 252 320 | eqbrtrid | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ≤  Σ* 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 322 | 285 287 46 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 323 |  | simplll | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ ) ) | 
						
							| 324 | 323 287 73 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 325 | 322 324 | xrge0addcld | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 326 | 325 | ex | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( 𝑦  ∈  𝑋  →  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 327 | 284 326 | ralrimi | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∀ 𝑦  ∈  𝑋 ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 328 | 18 | esumcl | ⊢ ( ( 𝑋  ∈  V  ∧  ∀ 𝑦  ∈  𝑋 ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑦  ∈  𝑋 ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 329 | 178 327 328 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 330 | 105 329 | sselid | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ℝ* ) | 
						
							| 331 | 215 14 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝑋  ∈  V ) | 
						
							| 332 |  | simp-4l | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 333 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  𝑦  ∈  𝑋 ) | 
						
							| 334 | 332 333 49 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 335 | 334 | adantr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ( 𝑀 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 336 | 65 | adantlr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 337 | 336 | adantr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 338 |  | id | ⊢ ( Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 339 | 338 | adantl | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 340 | 66 | breq2d | ⊢ ( ( ( 𝑀 ‘ 𝐴 )  ∈  ℝ  ∧  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ )  →  ( Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 341 | 340 | biimpar | ⊢ ( ( ( ( 𝑀 ‘ 𝐴 )  ∈  ℝ  ∧  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 342 | 335 337 339 341 | syl21anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 343 | 342 | ex | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ( Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 344 | 332 | simpld | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  𝜑 ) | 
						
							| 345 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } ) | 
						
							| 346 | 344 345 333 303 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 347 | 105 346 | sselid | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ℝ* ) | 
						
							| 348 | 334 | rexrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 349 | 336 | rexrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ* ) | 
						
							| 350 | 348 349 | xaddcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ℝ* ) | 
						
							| 351 |  | xrltle | ⊢ ( ( Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ∈  ℝ*  ∧  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ∈  ℝ* )  →  ( Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 352 | 347 350 351 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ( Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 353 | 343 352 | syld | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ( Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 354 | 353 | adantld | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 355 | 354 | ex | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  ( 𝑦  ∈  𝑋  →  ( ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 356 | 282 355 | ralrimi | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  ∀ 𝑦  ∈  𝑋 ( ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 357 |  | ralim | ⊢ ( ∀ 𝑦  ∈  𝑋 ( ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ( ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ∀ 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 358 | 356 357 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  →  ( ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) )  →  ∀ 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 359 | 358 | imp | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∀ 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 360 | 359 | r19.21bi | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  ∧  𝑦  ∈  𝑋 )  →  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 361 | 284 18 331 304 325 360 | esumlef | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  Σ* 𝑦  ∈  𝑋 ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 362 | 164 46 | sylan | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 363 | 284 18 331 362 324 | esumaddf | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  =  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 364 | 324 | ex | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( 𝑦  ∈  𝑋  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 365 | 284 364 | ralrimi | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ∀ 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 366 | 18 | esumcl | ⊢ ( ( 𝑋  ∈  V  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 367 | 178 365 366 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 368 | 105 367 | sselid | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ* ) | 
						
							| 369 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝑓 : 𝑋 –1-1→ ℕ ) | 
						
							| 370 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 371 | 370 | rnex | ⊢ ran  𝑓  ∈  V | 
						
							| 372 | 371 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ran  𝑓  ∈  V ) | 
						
							| 373 | 58 | frnd | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  ran  𝑓  ⊆  ℕ ) | 
						
							| 374 | 373 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ran  𝑓  ⊆  ℕ ) | 
						
							| 375 | 374 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑧  ∈  ran  𝑓 )  →  𝑧  ∈  ℕ ) | 
						
							| 376 | 54 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑧  ∈  ℕ )  →  2  ∈  ℝ+ ) | 
						
							| 377 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑧  ∈  ℕ )  →  𝑧  ∈  ℕ ) | 
						
							| 378 | 377 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑧  ∈  ℕ )  →  𝑧  ∈  ℤ ) | 
						
							| 379 | 376 378 | rpexpcld | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑧  ∈  ℕ )  →  ( 2 ↑ 𝑧 )  ∈  ℝ+ ) | 
						
							| 380 | 379 | rpreccld | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑧  ∈  ℕ )  →  ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  ℝ+ ) | 
						
							| 381 | 71 380 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑧  ∈  ℕ )  →  ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 382 | 381 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑧  ∈  ℕ )  →  ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 383 | 375 382 | syldan | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑧  ∈  ran  𝑓 )  →  ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 384 | 383 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ∀ 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 385 |  | nfcv | ⊢ Ⅎ 𝑧 ran  𝑓 | 
						
							| 386 | 385 | esumcl | ⊢ ( ( ran  𝑓  ∈  V  ∧  ∀ 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 387 | 372 384 386 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 388 | 105 387 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  ℝ* ) | 
						
							| 389 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 390 | 389 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  1  ∈  ℝ* ) | 
						
							| 391 | 71 | sseli | ⊢ ( 𝑒  ∈  ℝ+  →  𝑒  ∈  ( 0 [,] +∞ ) ) | 
						
							| 392 | 391 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  𝑒  ∈  ( 0 [,] +∞ ) ) | 
						
							| 393 |  | elxrge0 | ⊢ ( 𝑒  ∈  ( 0 [,] +∞ )  ↔  ( 𝑒  ∈  ℝ*  ∧  0  ≤  𝑒 ) ) | 
						
							| 394 | 392 393 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ( 𝑒  ∈  ℝ*  ∧  0  ≤  𝑒 ) ) | 
						
							| 395 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ ) | 
						
							| 396 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 397 | 396 | a1i | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  ℕ  ∈  V ) | 
						
							| 398 | 395 397 381 373 | esummono | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) )  ≤  Σ* 𝑧  ∈  ℕ ( 1  /  ( 2 ↑ 𝑧 ) ) ) | 
						
							| 399 |  | oveq2 | ⊢ ( 𝑧  =  𝑤  →  ( 2 ↑ 𝑧 )  =  ( 2 ↑ 𝑤 ) ) | 
						
							| 400 | 399 | oveq2d | ⊢ ( 𝑧  =  𝑤  →  ( 1  /  ( 2 ↑ 𝑧 ) )  =  ( 1  /  ( 2 ↑ 𝑤 ) ) ) | 
						
							| 401 |  | ioossico | ⊢ ( 0 (,) +∞ )  ⊆  ( 0 [,) +∞ ) | 
						
							| 402 | 69 401 | eqsstri | ⊢ ℝ+  ⊆  ( 0 [,) +∞ ) | 
						
							| 403 | 402 380 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑧  ∈  ℕ )  →  ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 404 |  | eqidd | ⊢ ( 𝑧  ∈  ℕ  →  ( 𝑤  ∈  ℕ  ↦  ( 1  /  ( 2 ↑ 𝑤 ) ) )  =  ( 𝑤  ∈  ℕ  ↦  ( 1  /  ( 2 ↑ 𝑤 ) ) ) ) | 
						
							| 405 |  | simpr | ⊢ ( ( 𝑧  ∈  ℕ  ∧  𝑤  =  𝑧 )  →  𝑤  =  𝑧 ) | 
						
							| 406 | 405 | oveq2d | ⊢ ( ( 𝑧  ∈  ℕ  ∧  𝑤  =  𝑧 )  →  ( 2 ↑ 𝑤 )  =  ( 2 ↑ 𝑧 ) ) | 
						
							| 407 | 406 | oveq2d | ⊢ ( ( 𝑧  ∈  ℕ  ∧  𝑤  =  𝑧 )  →  ( 1  /  ( 2 ↑ 𝑤 ) )  =  ( 1  /  ( 2 ↑ 𝑧 ) ) ) | 
						
							| 408 |  | id | ⊢ ( 𝑧  ∈  ℕ  →  𝑧  ∈  ℕ ) | 
						
							| 409 |  | ovexd | ⊢ ( 𝑧  ∈  ℕ  →  ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  V ) | 
						
							| 410 | 404 407 408 409 | fvmptd | ⊢ ( 𝑧  ∈  ℕ  →  ( ( 𝑤  ∈  ℕ  ↦  ( 1  /  ( 2 ↑ 𝑤 ) ) ) ‘ 𝑧 )  =  ( 1  /  ( 2 ↑ 𝑧 ) ) ) | 
						
							| 411 | 410 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑧  ∈  ℕ )  →  ( ( 𝑤  ∈  ℕ  ↦  ( 1  /  ( 2 ↑ 𝑤 ) ) ) ‘ 𝑧 )  =  ( 1  /  ( 2 ↑ 𝑧 ) ) ) | 
						
							| 412 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 413 |  | eqid | ⊢ ( 𝑤  ∈  ℕ  ↦  ( 1  /  ( 2 ↑ 𝑤 ) ) )  =  ( 𝑤  ∈  ℕ  ↦  ( 1  /  ( 2 ↑ 𝑤 ) ) ) | 
						
							| 414 | 413 | geo2lim | ⊢ ( 1  ∈  ℂ  →  seq 1 (  +  ,  ( 𝑤  ∈  ℕ  ↦  ( 1  /  ( 2 ↑ 𝑤 ) ) ) )  ⇝  1 ) | 
						
							| 415 | 412 414 | ax-mp | ⊢ seq 1 (  +  ,  ( 𝑤  ∈  ℕ  ↦  ( 1  /  ( 2 ↑ 𝑤 ) ) ) )  ⇝  1 | 
						
							| 416 | 415 | a1i | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  seq 1 (  +  ,  ( 𝑤  ∈  ℕ  ↦  ( 1  /  ( 2 ↑ 𝑤 ) ) ) )  ⇝  1 ) | 
						
							| 417 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 418 | 417 | a1i | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  1  ∈  ℝ ) | 
						
							| 419 | 400 403 411 416 418 | esumcvgsum | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  Σ* 𝑧  ∈  ℕ ( 1  /  ( 2 ↑ 𝑧 ) )  =  Σ 𝑧  ∈  ℕ ( 1  /  ( 2 ↑ 𝑧 ) ) ) | 
						
							| 420 |  | geoihalfsum | ⊢ Σ 𝑧  ∈  ℕ ( 1  /  ( 2 ↑ 𝑧 ) )  =  1 | 
						
							| 421 | 419 420 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  Σ* 𝑧  ∈  ℕ ( 1  /  ( 2 ↑ 𝑧 ) )  =  1 ) | 
						
							| 422 | 398 421 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) )  ≤  1 ) | 
						
							| 423 | 422 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) )  ≤  1 ) | 
						
							| 424 |  | xlemul2a | ⊢ ( ( ( Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) )  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  ( 𝑒  ∈  ℝ*  ∧  0  ≤  𝑒 ) )  ∧  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) )  ≤  1 )  →  ( 𝑒  ·e  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) ) )  ≤  ( 𝑒  ·e  1 ) ) | 
						
							| 425 | 388 390 394 423 424 | syl31anc | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ( 𝑒  ·e  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) ) )  ≤  ( 𝑒  ·e  1 ) ) | 
						
							| 426 | 17 23 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ ) | 
						
							| 427 | 426 25 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ ) | 
						
							| 428 | 76 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  𝑒  ∈  ℂ ) | 
						
							| 429 | 78 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) )  ∈  ℂ ) | 
						
							| 430 | 429 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) )  ∈  ℂ ) | 
						
							| 431 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 432 | 431 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  2  ∈  ℂ ) | 
						
							| 433 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 434 | 433 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  2  ≠  0 ) | 
						
							| 435 | 432 434 60 | expne0d | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) )  ≠  0 ) | 
						
							| 436 | 435 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) )  ≠  0 ) | 
						
							| 437 | 428 430 436 | divrecd | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  =  ( 𝑒  ·  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 438 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 439 | 438 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  1  ∈  ℝ+ ) | 
						
							| 440 | 439 61 | rpdivcld | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ+ ) | 
						
							| 441 | 52 440 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 442 | 441 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 443 |  | rexmul | ⊢ ( ( 𝑒  ∈  ℝ  ∧  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ )  →  ( 𝑒  ·e  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  =  ( 𝑒  ·  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 444 | 76 442 443 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑒  ·e  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  =  ( 𝑒  ·  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 445 | 437 444 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  =  ( 𝑒  ·e  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 446 | 445 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ∀ 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  =  ( 𝑒  ·e  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 447 | 427 446 | esumeq2d | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  =  Σ* 𝑦  ∈  𝑋 ( 𝑒  ·e  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 448 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  𝑋  ∈  V ) | 
						
							| 449 | 71 440 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 450 | 449 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  𝑋 )  →  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 451 | 402 | a1i | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  ℝ+  ⊆  ( 0 [,) +∞ ) ) | 
						
							| 452 | 451 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  𝑒  ∈  ( 0 [,) +∞ ) ) | 
						
							| 453 | 448 450 452 | esummulc2 | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ( 𝑒  ·e  Σ* 𝑦  ∈  𝑋 ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  =  Σ* 𝑦  ∈  𝑋 ( 𝑒  ·e  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 454 |  | nfcv | ⊢ Ⅎ 𝑦 ( 1  /  ( 2 ↑ 𝑧 ) ) | 
						
							| 455 |  | oveq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑦 )  →  ( 2 ↑ 𝑧 )  =  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 456 | 455 | oveq2d | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑦 )  →  ( 1  /  ( 2 ↑ 𝑧 ) )  =  ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 457 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  𝑋  ∈  V ) | 
						
							| 458 | 56 | simprbi | ⊢ ( 𝑓 : 𝑋 –1-1→ ℕ  →  Fun  ◡ 𝑓 ) | 
						
							| 459 | 57 | feqmptd | ⊢ ( 𝑓 : 𝑋 –1-1→ ℕ  →  𝑓  =  ( 𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 460 | 459 | cnveqd | ⊢ ( 𝑓 : 𝑋 –1-1→ ℕ  →  ◡ 𝑓  =  ◡ ( 𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 461 | 460 | funeqd | ⊢ ( 𝑓 : 𝑋 –1-1→ ℕ  →  ( Fun  ◡ 𝑓  ↔  Fun  ◡ ( 𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 462 | 458 461 | mpbid | ⊢ ( 𝑓 : 𝑋 –1-1→ ℕ  →  Fun  ◡ ( 𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 463 | 462 | adantl | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  Fun  ◡ ( 𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 464 | 454 426 18 456 457 463 449 59 | esumc | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  Σ* 𝑦  ∈  𝑋 ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  =  Σ* 𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑓 ‘ 𝑦 ) } ( 1  /  ( 2 ↑ 𝑧 ) ) ) | 
						
							| 465 |  | ffn | ⊢ ( 𝑓 : 𝑋 ⟶ ℕ  →  𝑓  Fn  𝑋 ) | 
						
							| 466 |  | fnrnfv | ⊢ ( 𝑓  Fn  𝑋  →  ran  𝑓  =  { 𝑥  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑓 ‘ 𝑦 ) } ) | 
						
							| 467 | 58 465 466 | 3syl | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  ran  𝑓  =  { 𝑥  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑓 ‘ 𝑦 ) } ) | 
						
							| 468 | 395 467 | esumeq1d | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) )  =  Σ* 𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑓 ‘ 𝑦 ) } ( 1  /  ( 2 ↑ 𝑧 ) ) ) | 
						
							| 469 | 464 468 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  Σ* 𝑦  ∈  𝑋 ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  =  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) ) ) | 
						
							| 470 | 469 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  Σ* 𝑦  ∈  𝑋 ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  =  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) ) ) | 
						
							| 471 | 470 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ( 𝑒  ·e  Σ* 𝑦  ∈  𝑋 ( 1  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  =  ( 𝑒  ·e  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) ) ) ) | 
						
							| 472 | 447 453 471 | 3eqtr2rd | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ( 𝑒  ·e  Σ* 𝑧  ∈  ran  𝑓 ( 1  /  ( 2 ↑ 𝑧 ) ) )  =  Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 473 | 394 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  𝑒  ∈  ℝ* ) | 
						
							| 474 |  | xmulrid | ⊢ ( 𝑒  ∈  ℝ*  →  ( 𝑒  ·e  1 )  =  𝑒 ) | 
						
							| 475 | 473 474 | syl | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ( 𝑒  ·e  1 )  =  𝑒 ) | 
						
							| 476 | 425 472 475 | 3brtr3d | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ≤  𝑒 ) | 
						
							| 477 | 164 369 204 476 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ≤  𝑒 ) | 
						
							| 478 |  | xleadd2a | ⊢ ( ( ( Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ∈  ℝ*  ∧  𝑒  ∈  ℝ*  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ* )  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) )  ≤  𝑒 )  →  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  𝑒 ) ) | 
						
							| 479 | 368 205 203 477 478 | syl31anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  Σ* 𝑦  ∈  𝑋 ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  𝑒 ) ) | 
						
							| 480 | 363 479 | eqbrtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  𝑒 ) ) | 
						
							| 481 | 309 330 206 361 480 | xrletrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑦  ∈  𝑋 Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  𝑒 ) ) | 
						
							| 482 | 201 309 206 321 481 | xrletrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  Σ* 𝑐  ∈  ∪  ran  𝑔 ( 𝑅 ‘ 𝑐 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  𝑒 ) ) | 
						
							| 483 | 176 201 206 280 482 | xrletrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  𝑒 ) ) | 
						
							| 484 | 204 | rpred | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  𝑒  ∈  ℝ ) | 
						
							| 485 |  | rexadd | ⊢ ( ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ  ∧  𝑒  ∈  ℝ )  →  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  𝑒 )  =  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +  𝑒 ) ) | 
						
							| 486 | 202 484 485 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +𝑒  𝑒 )  =  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +  𝑒 ) ) | 
						
							| 487 | 483 486 | breqtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω } )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +  𝑒 ) ) | 
						
							| 488 | 487 | anasss | ⊢ ( ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +  𝑒 ) ) | 
						
							| 489 | 488 | ex | ⊢ ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ( ( 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +  𝑒 ) ) ) | 
						
							| 490 | 489 | exlimdv | ⊢ ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ( ∃ 𝑔 ( 𝑔 : 𝑋 ⟶ { 𝑧  ∈  𝒫  dom  𝑅  ∣  𝑧  ≼  ω }  ∧  ∀ 𝑦  ∈  𝑋 ( 𝐴  ⊆  ∪  ( 𝑔 ‘ 𝑦 )  ∧  Σ* 𝑤  ∈  ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 )  <  ( ( 𝑀 ‘ 𝐴 )  +  ( 𝑒  /  ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +  𝑒 ) ) ) | 
						
							| 491 | 163 490 | mpd | ⊢ ( ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  ∧  𝑒  ∈  ℝ+ )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +  𝑒 ) ) | 
						
							| 492 | 491 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  ∀ 𝑒  ∈  ℝ+ ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +  𝑒 ) ) | 
						
							| 493 |  | xralrple | ⊢ ( ( ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ∈  ℝ*  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  ( ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ↔  ∀ 𝑒  ∈  ℝ+ ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +  𝑒 ) ) ) | 
						
							| 494 | 175 493 | sylan | ⊢ ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  ( ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ↔  ∀ 𝑒  ∈  ℝ+ ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +  𝑒 ) ) ) | 
						
							| 495 | 494 | adantr | ⊢ ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  ( ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ↔  ∀ 𝑒  ∈  ℝ+ ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  +  𝑒 ) ) ) | 
						
							| 496 | 492 495 | mpbird | ⊢ ( ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  ∧  𝑓 : 𝑋 –1-1→ ℕ )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 497 | 496 | ex | ⊢ ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  ( 𝑓 : 𝑋 –1-1→ ℕ  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 498 | 497 | exlimdv | ⊢ ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  ( ∃ 𝑓 𝑓 : 𝑋 –1-1→ ℕ  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 499 | 12 498 | mpd | ⊢ ( ( 𝜑  ∧  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 500 | 175 | adantr | ⊢ ( ( 𝜑  ∧  ¬  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ∈  ℝ* ) | 
						
							| 501 |  | pnfge | ⊢ ( ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ∈  ℝ*  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  +∞ ) | 
						
							| 502 | 500 501 | syl | ⊢ ( ( 𝜑  ∧  ¬  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  +∞ ) | 
						
							| 503 | 46 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 504 | 18 | esumcl | ⊢ ( ( 𝑋  ∈  V  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 505 | 15 503 504 | syl2anc | ⊢ ( 𝜑  →  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 506 |  | xrge0nre | ⊢ ( ( Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ )  ∧  ¬  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  =  +∞ ) | 
						
							| 507 | 505 506 | sylan | ⊢ ( ( 𝜑  ∧  ¬  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  =  +∞ ) | 
						
							| 508 | 502 507 | breqtrrd | ⊢ ( ( 𝜑  ∧  ¬  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 )  ∈  ℝ )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 509 | 499 508 | pm2.61dan | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑋 𝐴 )  ≤  Σ* 𝑦  ∈  𝑋 ( 𝑀 ‘ 𝐴 ) ) |