Step |
Hyp |
Ref |
Expression |
1 |
|
oms.m |
⊢ 𝑀 = ( toOMeas ‘ 𝑅 ) |
2 |
|
oms.o |
⊢ ( 𝜑 → 𝑄 ∈ 𝑉 ) |
3 |
|
oms.r |
⊢ ( 𝜑 → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
4 |
|
omssubadd.a |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝐴 ⊆ ∪ 𝑄 ) |
5 |
|
omssubadd.b |
⊢ ( 𝜑 → 𝑋 ≼ ω ) |
6 |
|
nnenom |
⊢ ℕ ≈ ω |
7 |
6
|
ensymi |
⊢ ω ≈ ℕ |
8 |
|
domentr |
⊢ ( ( 𝑋 ≼ ω ∧ ω ≈ ℕ ) → 𝑋 ≼ ℕ ) |
9 |
5 7 8
|
sylancl |
⊢ ( 𝜑 → 𝑋 ≼ ℕ ) |
10 |
|
brdomi |
⊢ ( 𝑋 ≼ ℕ → ∃ 𝑓 𝑓 : 𝑋 –1-1→ ℕ ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ∃ 𝑓 𝑓 : 𝑋 –1-1→ ℕ ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑓 𝑓 : 𝑋 –1-1→ ℕ ) |
13 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → 𝜑 ) |
14 |
|
ctex |
⊢ ( 𝑋 ≼ ω → 𝑋 ∈ V ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
16 |
13 15
|
syl |
⊢ ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → 𝑋 ∈ V ) |
17 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
18 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑋 |
19 |
18
|
nfesum1 |
⊢ Ⅎ 𝑦 Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) |
20 |
|
nfcv |
⊢ Ⅎ 𝑦 ℝ |
21 |
19 20
|
nfel |
⊢ Ⅎ 𝑦 Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ |
22 |
17 21
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) |
23 |
|
nfv |
⊢ Ⅎ 𝑦 𝑓 : 𝑋 –1-1→ ℕ |
24 |
22 23
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) |
25 |
|
nfv |
⊢ Ⅎ 𝑦 𝑒 ∈ ℝ+ |
26 |
24 25
|
nfan |
⊢ Ⅎ 𝑦 ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) |
27 |
13
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 𝜑 ) |
28 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
29 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → 𝑋 ∈ V ) |
30 |
|
omsf |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → ( toOMeas ‘ 𝑅 ) : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |
31 |
1
|
feq1i |
⊢ ( 𝑀 : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ↔ ( toOMeas ‘ 𝑅 ) : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |
32 |
30 31
|
sylibr |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → 𝑀 : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |
33 |
2 3 32
|
syl2anc |
⊢ ( 𝜑 → 𝑀 : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑀 : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |
35 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝑅 = 𝑄 ) |
36 |
35
|
unieqd |
⊢ ( 𝜑 → ∪ dom 𝑅 = ∪ 𝑄 ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ∪ dom 𝑅 = ∪ 𝑄 ) |
38 |
4 37
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝐴 ⊆ ∪ dom 𝑅 ) |
39 |
2
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑄 ∈ V ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ∪ 𝑄 ∈ V ) |
41 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ∪ 𝑄 ∧ ∪ 𝑄 ∈ V ) → 𝐴 ∈ V ) |
42 |
4 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝐴 ∈ V ) |
43 |
|
elpwg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ∪ dom 𝑅 ↔ 𝐴 ⊆ ∪ dom 𝑅 ) ) |
44 |
42 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 ∈ 𝒫 ∪ dom 𝑅 ↔ 𝐴 ⊆ ∪ dom 𝑅 ) ) |
45 |
38 44
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) |
46 |
34 45
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
47 |
46
|
adantlr |
⊢ ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) |
49 |
22 29 47 48
|
esumcvgre |
⊢ ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) |
50 |
49
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) |
51 |
50
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) |
52 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
53 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 𝑒 ∈ ℝ+ ) |
54 |
|
2rp |
⊢ 2 ∈ ℝ+ |
55 |
54
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → 2 ∈ ℝ+ ) |
56 |
|
df-f1 |
⊢ ( 𝑓 : 𝑋 –1-1→ ℕ ↔ ( 𝑓 : 𝑋 ⟶ ℕ ∧ Fun ◡ 𝑓 ) ) |
57 |
56
|
simplbi |
⊢ ( 𝑓 : 𝑋 –1-1→ ℕ → 𝑓 : 𝑋 ⟶ ℕ ) |
58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → 𝑓 : 𝑋 ⟶ ℕ ) |
59 |
58
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑦 ) ∈ ℕ ) |
60 |
59
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑦 ) ∈ ℤ ) |
61 |
55 60
|
rpexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ∈ ℝ+ ) |
62 |
61
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ∈ ℝ+ ) |
63 |
53 62
|
rpdivcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ+ ) |
64 |
52 63
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ ) |
65 |
64
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ ) |
66 |
|
rexadd |
⊢ ( ( ( 𝑀 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ ) → ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) = ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
67 |
51 65 66
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) = ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
68 |
13 46
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
69 |
|
dfrp2 |
⊢ ℝ+ = ( 0 (,) +∞ ) |
70 |
|
ioossicc |
⊢ ( 0 (,) +∞ ) ⊆ ( 0 [,] +∞ ) |
71 |
69 70
|
eqsstri |
⊢ ℝ+ ⊆ ( 0 [,] +∞ ) |
72 |
71 63
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ( 0 [,] +∞ ) ) |
73 |
72
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ( 0 [,] +∞ ) ) |
74 |
68 73
|
xrge0addcld |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
75 |
67 74
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
76 |
52 53
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 𝑒 ∈ ℝ ) |
77 |
76
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 𝑒 ∈ ℝ ) |
78 |
52 61
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ∈ ℝ ) |
79 |
78
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ∈ ℝ ) |
80 |
79
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ∈ ℝ ) |
81 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 𝑒 ∈ ℝ+ ) |
82 |
81
|
rpgt0d |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 0 < 𝑒 ) |
83 |
|
2re |
⊢ 2 ∈ ℝ |
84 |
83
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 2 ∈ ℝ ) |
85 |
60
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑦 ) ∈ ℤ ) |
86 |
85
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑦 ) ∈ ℤ ) |
87 |
|
2pos |
⊢ 0 < 2 |
88 |
87
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 0 < 2 ) |
89 |
|
expgt0 |
⊢ ( ( 2 ∈ ℝ ∧ ( 𝑓 ‘ 𝑦 ) ∈ ℤ ∧ 0 < 2 ) → 0 < ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) |
90 |
84 86 88 89
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 0 < ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) |
91 |
77 80 82 90
|
divgt0d |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 0 < ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) |
92 |
65 51
|
ltaddposd |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 0 < ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑀 ‘ 𝐴 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
93 |
91 92
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
94 |
1
|
fveq1i |
⊢ ( 𝑀 ‘ 𝐴 ) = ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) |
95 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑄 ∈ 𝑉 ) |
96 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
97 |
|
omsfval |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ⊆ ∪ 𝑄 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) |
98 |
95 96 4 97
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ( toOMeas ‘ 𝑅 ) ‘ 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) |
99 |
94 98
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) |
100 |
13 99
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) |
101 |
100
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) = ( 𝑀 ‘ 𝐴 ) ) |
102 |
101
|
breq1d |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( 𝑀 ‘ 𝐴 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
103 |
93 102
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
104 |
75 103
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
105 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
106 |
|
xrltso |
⊢ < Or ℝ* |
107 |
|
soss |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] +∞ ) ) ) |
108 |
105 106 107
|
mp2 |
⊢ < Or ( 0 [,] +∞ ) |
109 |
|
biid |
⊢ ( < Or ( 0 [,] +∞ ) ↔ < Or ( 0 [,] +∞ ) ) |
110 |
108 109
|
mpbi |
⊢ < Or ( 0 [,] +∞ ) |
111 |
110
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → < Or ( 0 [,] +∞ ) ) |
112 |
|
omscl |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ⊆ ( 0 [,] +∞ ) ) |
113 |
95 96 45 112
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ⊆ ( 0 [,] +∞ ) ) |
114 |
|
xrge0infss |
⊢ ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ⊆ ( 0 [,] +∞ ) → ∃ 𝑣 ∈ ( 0 [,] +∞ ) ( ∀ ℎ ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬ ℎ < 𝑣 ∧ ∀ ℎ ∈ ( 0 [,] +∞ ) ( 𝑣 < ℎ → ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ℎ ) ) ) |
115 |
113 114
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑣 ∈ ( 0 [,] +∞ ) ( ∀ ℎ ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬ ℎ < 𝑣 ∧ ∀ ℎ ∈ ( 0 [,] +∞ ) ( 𝑣 < ℎ → ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ℎ ) ) ) |
116 |
111 115
|
infglb |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
117 |
116
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
118 |
27 28 104 117
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
119 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) |
120 |
|
esumex |
⊢ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∈ V |
121 |
119 120
|
elrnmpti |
⊢ ( 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ↔ ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) |
122 |
121
|
anbi1i |
⊢ ( ( 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ↔ ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
123 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ↔ ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
124 |
122 123
|
bitr4i |
⊢ ( ( 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ↔ ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
125 |
124
|
exbii |
⊢ ( ∃ 𝑢 ( 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ↔ ∃ 𝑢 ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
126 |
|
df-rex |
⊢ ( ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∃ 𝑢 ( 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
127 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ∃ 𝑢 ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ↔ ∃ 𝑢 ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
128 |
125 126 127
|
3bitr4i |
⊢ ( ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ∃ 𝑢 ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
129 |
|
breq1 |
⊢ ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) → ( 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
130 |
|
idd |
⊢ ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) → ( Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) → Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
131 |
129 130
|
sylbid |
⊢ ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) → ( 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) → Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
132 |
131
|
imp |
⊢ ( ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
133 |
132
|
exlimiv |
⊢ ( ∃ 𝑢 ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
134 |
133
|
reximi |
⊢ ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ∃ 𝑢 ( 𝑢 = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ∧ 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
135 |
128 134
|
sylbi |
⊢ ( ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
136 |
118 135
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
137 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) → 𝑧 ≼ ω ) |
138 |
137
|
a1i |
⊢ ( 𝑧 ∈ 𝒫 dom 𝑅 → ( ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) → 𝑧 ≼ ω ) ) |
139 |
138
|
ss2rabi |
⊢ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } |
140 |
|
rexss |
⊢ ( { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
141 |
139 140
|
ax-mp |
⊢ ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
142 |
|
unieq |
⊢ ( 𝑧 = 𝑥 → ∪ 𝑧 = ∪ 𝑥 ) |
143 |
142
|
sseq2d |
⊢ ( 𝑧 = 𝑥 → ( 𝐴 ⊆ ∪ 𝑧 ↔ 𝐴 ⊆ ∪ 𝑥 ) ) |
144 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ≼ ω ↔ 𝑥 ≼ ω ) ) |
145 |
143 144
|
anbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) ↔ ( 𝐴 ⊆ ∪ 𝑥 ∧ 𝑥 ≼ ω ) ) ) |
146 |
145
|
elrab |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↔ ( 𝑥 ∈ 𝒫 dom 𝑅 ∧ ( 𝐴 ⊆ ∪ 𝑥 ∧ 𝑥 ≼ ω ) ) ) |
147 |
146
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } → ( 𝐴 ⊆ ∪ 𝑥 ∧ 𝑥 ≼ ω ) ) |
148 |
147
|
simpld |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } → 𝐴 ⊆ ∪ 𝑥 ) |
149 |
148
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } → 𝐴 ⊆ ∪ 𝑥 ) ) |
150 |
149
|
anim1d |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ( 𝐴 ⊆ ∪ 𝑥 ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
151 |
150
|
reximdv |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ( 𝐴 ⊆ ∪ 𝑥 ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
152 |
141 151
|
syl5bi |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ( 𝐴 ⊆ ∪ 𝑥 ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
153 |
136 152
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ( 𝐴 ⊆ ∪ 𝑥 ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
154 |
153
|
ex |
⊢ ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ( 𝑦 ∈ 𝑋 → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ( 𝐴 ⊆ ∪ 𝑥 ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
155 |
26 154
|
ralrimi |
⊢ ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ∀ 𝑦 ∈ 𝑋 ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ( 𝐴 ⊆ ∪ 𝑥 ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
156 |
|
unieq |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑦 ) → ∪ 𝑥 = ∪ ( 𝑔 ‘ 𝑦 ) ) |
157 |
156
|
sseq2d |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑦 ) → ( 𝐴 ⊆ ∪ 𝑥 ↔ 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ) ) |
158 |
|
esumeq1 |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑦 ) → Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) = Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) |
159 |
158
|
breq1d |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑦 ) → ( Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
160 |
157 159
|
anbi12d |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑦 ) → ( ( 𝐴 ⊆ ∪ 𝑥 ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
161 |
160
|
ac6sg |
⊢ ( 𝑋 ∈ V → ( ∀ 𝑦 ∈ 𝑋 ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ( 𝐴 ⊆ ∪ 𝑥 ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ∃ 𝑔 ( 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) ) |
162 |
161
|
imp |
⊢ ( ( 𝑋 ∈ V ∧ ∀ 𝑦 ∈ 𝑋 ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ( 𝐴 ⊆ ∪ 𝑥 ∧ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∃ 𝑔 ( 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
163 |
16 155 162
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑔 ( 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
164 |
13
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝜑 ) |
165 |
38
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ dom 𝑅 ) |
166 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ dom 𝑅 ↔ ∀ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ dom 𝑅 ) |
167 |
165 166
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ dom 𝑅 ) |
168 |
42
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 𝐴 ∈ V ) |
169 |
|
iunexg |
⊢ ( ( 𝑋 ∈ V ∧ ∀ 𝑦 ∈ 𝑋 𝐴 ∈ V ) → ∪ 𝑦 ∈ 𝑋 𝐴 ∈ V ) |
170 |
15 168 169
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑦 ∈ 𝑋 𝐴 ∈ V ) |
171 |
|
elpwg |
⊢ ( ∪ 𝑦 ∈ 𝑋 𝐴 ∈ V → ( ∪ 𝑦 ∈ 𝑋 𝐴 ∈ 𝒫 ∪ dom 𝑅 ↔ ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ dom 𝑅 ) ) |
172 |
170 171
|
syl |
⊢ ( 𝜑 → ( ∪ 𝑦 ∈ 𝑋 𝐴 ∈ 𝒫 ∪ dom 𝑅 ↔ ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ dom 𝑅 ) ) |
173 |
167 172
|
mpbird |
⊢ ( 𝜑 → ∪ 𝑦 ∈ 𝑋 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) |
174 |
33 173
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
175 |
105 174
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ∈ ℝ* ) |
176 |
164 175
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ∈ ℝ* ) |
177 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
178 |
29
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝑋 ∈ V ) |
179 |
177 178
|
fexd |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝑔 ∈ V ) |
180 |
|
rnexg |
⊢ ( 𝑔 ∈ V → ran 𝑔 ∈ V ) |
181 |
|
uniexg |
⊢ ( ran 𝑔 ∈ V → ∪ ran 𝑔 ∈ V ) |
182 |
179 180 181
|
3syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∪ ran 𝑔 ∈ V ) |
183 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝜑 ) |
184 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑐 ∈ ∪ ran 𝑔 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
185 |
|
frn |
⊢ ( 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → ran 𝑔 ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
186 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ⊆ 𝒫 dom 𝑅 |
187 |
185 186
|
sstrdi |
⊢ ( 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → ran 𝑔 ⊆ 𝒫 dom 𝑅 ) |
188 |
187
|
unissd |
⊢ ( 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → ∪ ran 𝑔 ⊆ ∪ 𝒫 dom 𝑅 ) |
189 |
|
unipw |
⊢ ∪ 𝒫 dom 𝑅 = dom 𝑅 |
190 |
188 189
|
sseqtrdi |
⊢ ( 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → ∪ ran 𝑔 ⊆ dom 𝑅 ) |
191 |
190
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → ∪ ran 𝑔 ⊆ dom 𝑅 ) |
192 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → dom 𝑅 = 𝑄 ) |
193 |
191 192
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → ∪ ran 𝑔 ⊆ 𝑄 ) |
194 |
193
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑐 ∈ ∪ ran 𝑔 ) → 𝑐 ∈ 𝑄 ) |
195 |
184 194
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑐 ∈ ∪ ran 𝑔 ) → ( 𝑅 ‘ 𝑐 ) ∈ ( 0 [,] +∞ ) ) |
196 |
195
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → ∀ 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ( 0 [,] +∞ ) ) |
197 |
183 177 196
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∀ 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ( 0 [,] +∞ ) ) |
198 |
|
nfcv |
⊢ Ⅎ 𝑐 ∪ ran 𝑔 |
199 |
198
|
esumcl |
⊢ ( ( ∪ ran 𝑔 ∈ V ∧ ∀ 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ( 0 [,] +∞ ) ) |
200 |
182 197 199
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ( 0 [,] +∞ ) ) |
201 |
105 200
|
sselid |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ℝ* ) |
202 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) |
203 |
202
|
rexrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ) |
204 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝑒 ∈ ℝ+ ) |
205 |
204
|
rpxrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝑒 ∈ ℝ* ) |
206 |
203 205
|
xaddcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 𝑒 ) ∈ ℝ* ) |
207 |
185
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ran 𝑔 ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
208 |
|
sstr |
⊢ ( ( ran 𝑔 ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ∧ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ⊆ 𝒫 dom 𝑅 ) → ran 𝑔 ⊆ 𝒫 dom 𝑅 ) |
209 |
186 208
|
mpan2 |
⊢ ( ran 𝑔 ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → ran 𝑔 ⊆ 𝒫 dom 𝑅 ) |
210 |
|
sspwuni |
⊢ ( ran 𝑔 ⊆ 𝒫 dom 𝑅 ↔ ∪ ran 𝑔 ⊆ dom 𝑅 ) |
211 |
209 210
|
sylib |
⊢ ( ran 𝑔 ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → ∪ ran 𝑔 ⊆ dom 𝑅 ) |
212 |
207 211
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∪ ran 𝑔 ⊆ dom 𝑅 ) |
213 |
|
ffn |
⊢ ( 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → 𝑔 Fn 𝑋 ) |
214 |
213
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝑔 Fn 𝑋 ) |
215 |
164 5
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝑋 ≼ ω ) |
216 |
|
fnct |
⊢ ( ( 𝑔 Fn 𝑋 ∧ 𝑋 ≼ ω ) → 𝑔 ≼ ω ) |
217 |
|
rnct |
⊢ ( 𝑔 ≼ ω → ran 𝑔 ≼ ω ) |
218 |
216 217
|
syl |
⊢ ( ( 𝑔 Fn 𝑋 ∧ 𝑋 ≼ ω ) → ran 𝑔 ≼ ω ) |
219 |
|
dfss3 |
⊢ ( ran 𝑔 ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ↔ ∀ 𝑤 ∈ ran 𝑔 𝑤 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
220 |
219
|
biimpi |
⊢ ( ran 𝑔 ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → ∀ 𝑤 ∈ ran 𝑔 𝑤 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
221 |
|
breq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ≼ ω ↔ 𝑤 ≼ ω ) ) |
222 |
221
|
elrab |
⊢ ( 𝑤 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ↔ ( 𝑤 ∈ 𝒫 dom 𝑅 ∧ 𝑤 ≼ ω ) ) |
223 |
222
|
simprbi |
⊢ ( 𝑤 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → 𝑤 ≼ ω ) |
224 |
223
|
ralimi |
⊢ ( ∀ 𝑤 ∈ ran 𝑔 𝑤 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → ∀ 𝑤 ∈ ran 𝑔 𝑤 ≼ ω ) |
225 |
220 224
|
syl |
⊢ ( ran 𝑔 ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } → ∀ 𝑤 ∈ ran 𝑔 𝑤 ≼ ω ) |
226 |
|
unictb |
⊢ ( ( ran 𝑔 ≼ ω ∧ ∀ 𝑤 ∈ ran 𝑔 𝑤 ≼ ω ) → ∪ ran 𝑔 ≼ ω ) |
227 |
218 225 226
|
syl2an |
⊢ ( ( ( 𝑔 Fn 𝑋 ∧ 𝑋 ≼ ω ) ∧ ran 𝑔 ⊆ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → ∪ ran 𝑔 ≼ ω ) |
228 |
214 215 207 227
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∪ ran 𝑔 ≼ ω ) |
229 |
|
ctex |
⊢ ( ∪ ran 𝑔 ≼ ω → ∪ ran 𝑔 ∈ V ) |
230 |
|
elpwg |
⊢ ( ∪ ran 𝑔 ∈ V → ( ∪ ran 𝑔 ∈ 𝒫 dom 𝑅 ↔ ∪ ran 𝑔 ⊆ dom 𝑅 ) ) |
231 |
228 229 230
|
3syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( ∪ ran 𝑔 ∈ 𝒫 dom 𝑅 ↔ ∪ ran 𝑔 ⊆ dom 𝑅 ) ) |
232 |
212 231
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∪ ran 𝑔 ∈ 𝒫 dom 𝑅 ) |
233 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ) |
234 |
233
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ∀ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ) |
235 |
|
fvssunirn |
⊢ ( 𝑔 ‘ 𝑦 ) ⊆ ∪ ran 𝑔 |
236 |
235
|
unissi |
⊢ ∪ ( 𝑔 ‘ 𝑦 ) ⊆ ∪ ∪ ran 𝑔 |
237 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ ∪ ( 𝑔 ‘ 𝑦 ) ⊆ ∪ ∪ ran 𝑔 ) → 𝐴 ⊆ ∪ ∪ ran 𝑔 ) |
238 |
236 237
|
mpan2 |
⊢ ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) → 𝐴 ⊆ ∪ ∪ ran 𝑔 ) |
239 |
238
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ∪ ran 𝑔 ) |
240 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ∪ ran 𝑔 ↔ ∀ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ∪ ran 𝑔 ) |
241 |
239 240
|
sylibr |
⊢ ( ∀ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) → ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ∪ ran 𝑔 ) |
242 |
234 241
|
syl |
⊢ ( ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ∪ ran 𝑔 ) |
243 |
242
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ∪ ran 𝑔 ) |
244 |
232 243 228
|
jca32 |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( ∪ ran 𝑔 ∈ 𝒫 dom 𝑅 ∧ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ∪ ran 𝑔 ∧ ∪ ran 𝑔 ≼ ω ) ) ) |
245 |
|
unieq |
⊢ ( 𝑧 = ∪ ran 𝑔 → ∪ 𝑧 = ∪ ∪ ran 𝑔 ) |
246 |
245
|
sseq2d |
⊢ ( 𝑧 = ∪ ran 𝑔 → ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ↔ ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ∪ ran 𝑔 ) ) |
247 |
|
breq1 |
⊢ ( 𝑧 = ∪ ran 𝑔 → ( 𝑧 ≼ ω ↔ ∪ ran 𝑔 ≼ ω ) ) |
248 |
246 247
|
anbi12d |
⊢ ( 𝑧 = ∪ ran 𝑔 → ( ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) ↔ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ∪ ran 𝑔 ∧ ∪ ran 𝑔 ≼ ω ) ) ) |
249 |
248
|
elrab |
⊢ ( ∪ ran 𝑔 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↔ ( ∪ ran 𝑔 ∈ 𝒫 dom 𝑅 ∧ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ ∪ ran 𝑔 ∧ ∪ ran 𝑔 ≼ ω ) ) ) |
250 |
244 249
|
sylibr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∪ ran 𝑔 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ) |
251 |
|
fveq2 |
⊢ ( 𝑐 = 𝑤 → ( 𝑅 ‘ 𝑐 ) = ( 𝑅 ‘ 𝑤 ) ) |
252 |
251
|
cbvesumv |
⊢ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) = Σ* 𝑤 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑤 ) |
253 |
|
esumeq1 |
⊢ ( 𝑥 = ∪ ran 𝑔 → Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) = Σ* 𝑤 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑤 ) ) |
254 |
253
|
rspceeqv |
⊢ ( ( ∪ ran 𝑔 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ∧ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) = Σ* 𝑤 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑤 ) ) → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) |
255 |
250 252 254
|
sylancl |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) |
256 |
|
esumex |
⊢ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ V |
257 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) = ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) |
258 |
257
|
elrnmpt |
⊢ ( Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ V → ( Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ↔ ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ) |
259 |
256 258
|
ax-mp |
⊢ ( Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ↔ ∃ 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) = Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) |
260 |
255 259
|
sylibr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ) |
261 |
110
|
a1i |
⊢ ( 𝜑 → < Or ( 0 [,] +∞ ) ) |
262 |
|
omscl |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ ∪ 𝑦 ∈ 𝑋 𝐴 ∈ 𝒫 ∪ dom 𝑅 ) → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ⊆ ( 0 [,] +∞ ) ) |
263 |
2 3 173 262
|
syl3anc |
⊢ ( 𝜑 → ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ⊆ ( 0 [,] +∞ ) ) |
264 |
|
xrge0infss |
⊢ ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ⊆ ( 0 [,] +∞ ) → ∃ 𝑒 ∈ ( 0 [,] +∞ ) ( ∀ 𝑡 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬ 𝑡 < 𝑒 ∧ ∀ 𝑡 ∈ ( 0 [,] +∞ ) ( 𝑒 < 𝑡 → ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < 𝑡 ) ) ) |
265 |
263 264
|
syl |
⊢ ( 𝜑 → ∃ 𝑒 ∈ ( 0 [,] +∞ ) ( ∀ 𝑡 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) ¬ 𝑡 < 𝑒 ∧ ∀ 𝑡 ∈ ( 0 [,] +∞ ) ( 𝑒 < 𝑡 → ∃ 𝑢 ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) 𝑢 < 𝑡 ) ) ) |
266 |
261 265
|
inflb |
⊢ ( 𝜑 → ( Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) → ¬ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) ) |
267 |
1
|
fveq1i |
⊢ ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) = ( ( toOMeas ‘ 𝑅 ) ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) |
268 |
167 36
|
sseqtrd |
⊢ ( 𝜑 → ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑄 ) |
269 |
|
omsfval |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ∧ ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑄 ) → ( ( toOMeas ‘ 𝑅 ) ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) |
270 |
2 3 268 269
|
syl3anc |
⊢ ( 𝜑 → ( ( toOMeas ‘ 𝑅 ) ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) |
271 |
267 270
|
eqtrid |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) = inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) |
272 |
271
|
breq2d |
⊢ ( 𝜑 → ( Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ↔ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) ) |
273 |
272
|
notbid |
⊢ ( 𝜑 → ( ¬ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ↔ ¬ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < inf ( ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) , ( 0 [,] +∞ ) , < ) ) ) |
274 |
266 273
|
sylibrd |
⊢ ( 𝜑 → ( Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ran ( 𝑥 ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ ( ∪ 𝑦 ∈ 𝑋 𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω ) } ↦ Σ* 𝑤 ∈ 𝑥 ( 𝑅 ‘ 𝑤 ) ) → ¬ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ) ) |
275 |
164 260 274
|
sylc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ¬ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ) |
276 |
|
biid |
⊢ ( ¬ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ↔ ¬ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ) |
277 |
275 276
|
sylib |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ¬ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ) |
278 |
|
xrlenlt |
⊢ ( ( ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ∈ ℝ* ∧ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ∈ ℝ* ) → ( ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ↔ ¬ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ) ) |
279 |
176 201 278
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ↔ ¬ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) < ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ) ) |
280 |
277 279
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ) |
281 |
|
nfv |
⊢ Ⅎ 𝑦 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } |
282 |
26 281
|
nfan |
⊢ Ⅎ 𝑦 ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
283 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
284 |
282 283
|
nfan |
⊢ Ⅎ 𝑦 ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
285 |
|
simp-6l |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝜑 ) |
286 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
287 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
288 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
289 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ) → 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
290 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ) → 𝑦 ∈ 𝑋 ) |
291 |
289 290
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ) → ( 𝑔 ‘ 𝑦 ) ∈ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
292 |
186 291
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ) → ( 𝑔 ‘ 𝑦 ) ∈ 𝒫 dom 𝑅 ) |
293 |
292
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ) → ( 𝑔 ‘ 𝑦 ) ⊆ dom 𝑅 ) |
294 |
288 293
|
fssdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ) → ( 𝑔 ‘ 𝑦 ) ⊆ 𝑄 ) |
295 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ) → 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ) |
296 |
294 295
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ) → 𝑤 ∈ 𝑄 ) |
297 |
288 296
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ) → ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
298 |
297
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ∀ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
299 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑦 ) ∈ V |
300 |
|
nfcv |
⊢ Ⅎ 𝑤 ( 𝑔 ‘ 𝑦 ) |
301 |
300
|
esumcl |
⊢ ( ( ( 𝑔 ‘ 𝑦 ) ∈ V ∧ ∀ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
302 |
299 301
|
mpan |
⊢ ( ∀ 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
303 |
298 302
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
304 |
285 286 287 303
|
syl21anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∧ 𝑦 ∈ 𝑋 ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
305 |
304
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( 𝑦 ∈ 𝑋 → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) ) |
306 |
284 305
|
ralrimi |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∀ 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
307 |
18
|
esumcl |
⊢ ( ( 𝑋 ∈ V ∧ ∀ 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
308 |
178 306 307
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
309 |
105 308
|
sselid |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ℝ* ) |
310 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
311 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
312 |
|
fniunfv |
⊢ ( 𝑔 Fn 𝑋 → ∪ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) = ∪ ran 𝑔 ) |
313 |
311 213 312
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → ∪ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) = ∪ ran 𝑔 ) |
314 |
310 313
|
esumeq1d |
⊢ ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → Σ* 𝑤 ∈ ∪ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) = Σ* 𝑤 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑤 ) ) |
315 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → 𝑋 ∈ V ) |
316 |
299
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑔 ‘ 𝑦 ) ∈ V ) |
317 |
315 316 297
|
esumiun |
⊢ ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → Σ* 𝑤 ∈ ∪ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ Σ* 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) |
318 |
314 317
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → Σ* 𝑤 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑤 ) ≤ Σ* 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) |
319 |
13 318
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → Σ* 𝑤 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑤 ) ≤ Σ* 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) |
320 |
319
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑤 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑤 ) ≤ Σ* 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) |
321 |
252 320
|
eqbrtrid |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ≤ Σ* 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ) |
322 |
285 287 46
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
323 |
|
simplll |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ) |
324 |
323 287 73
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ( 0 [,] +∞ ) ) |
325 |
322 324
|
xrge0addcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
326 |
325
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( 𝑦 ∈ 𝑋 → ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ( 0 [,] +∞ ) ) ) |
327 |
284 326
|
ralrimi |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∀ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
328 |
18
|
esumcl |
⊢ ( ( 𝑋 ∈ V ∧ ∀ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
329 |
178 327 328
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
330 |
105 329
|
sselid |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ℝ* ) |
331 |
215 14
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝑋 ∈ V ) |
332 |
|
simp-4l |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ) |
333 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
334 |
332 333 49
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) |
335 |
334
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) |
336 |
65
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ ) |
337 |
336
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ ) |
338 |
|
id |
⊢ ( Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
339 |
338
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
340 |
66
|
breq2d |
⊢ ( ( ( 𝑀 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ ) → ( Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
341 |
340
|
biimpar |
⊢ ( ( ( ( 𝑀 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
342 |
335 337 339 341
|
syl21anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
343 |
342
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ( Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
344 |
332
|
simpld |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → 𝜑 ) |
345 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) |
346 |
344 345 333 303
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
347 |
105 346
|
sselid |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ℝ* ) |
348 |
334
|
rexrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ) |
349 |
336
|
rexrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ* ) |
350 |
348 349
|
xaddcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ℝ* ) |
351 |
|
xrltle |
⊢ ( ( Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ∈ ℝ* ∧ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ℝ* ) → ( Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
352 |
347 350 351
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ( Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
353 |
343 352
|
syld |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ( Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
354 |
353
|
adantld |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
355 |
354
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → ( 𝑦 ∈ 𝑋 → ( ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
356 |
282 355
|
ralrimi |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → ∀ 𝑦 ∈ 𝑋 ( ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
357 |
|
ralim |
⊢ ( ∀ 𝑦 ∈ 𝑋 ( ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ∀ 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
358 |
356 357
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ∀ 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
359 |
358
|
imp |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∀ 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
360 |
359
|
r19.21bi |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∧ 𝑦 ∈ 𝑋 ) → Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
361 |
284 18 331 304 325 360
|
esumlef |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ Σ* 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
362 |
164 46
|
sylan |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
363 |
284 18 331 362 324
|
esumaddf |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) = ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
364 |
324
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( 𝑦 ∈ 𝑋 → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ( 0 [,] +∞ ) ) ) |
365 |
284 364
|
ralrimi |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ( 0 [,] +∞ ) ) |
366 |
18
|
esumcl |
⊢ ( ( 𝑋 ∈ V ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ( 0 [,] +∞ ) ) |
367 |
178 365 366
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ( 0 [,] +∞ ) ) |
368 |
105 367
|
sselid |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ* ) |
369 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝑓 : 𝑋 –1-1→ ℕ ) |
370 |
|
vex |
⊢ 𝑓 ∈ V |
371 |
370
|
rnex |
⊢ ran 𝑓 ∈ V |
372 |
371
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ran 𝑓 ∈ V ) |
373 |
58
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → ran 𝑓 ⊆ ℕ ) |
374 |
373
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ran 𝑓 ⊆ ℕ ) |
375 |
374
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑧 ∈ ran 𝑓 ) → 𝑧 ∈ ℕ ) |
376 |
54
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑧 ∈ ℕ ) → 2 ∈ ℝ+ ) |
377 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑧 ∈ ℕ ) → 𝑧 ∈ ℕ ) |
378 |
377
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑧 ∈ ℕ ) → 𝑧 ∈ ℤ ) |
379 |
376 378
|
rpexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 2 ↑ 𝑧 ) ∈ ℝ+ ) |
380 |
379
|
rpreccld |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 1 / ( 2 ↑ 𝑧 ) ) ∈ ℝ+ ) |
381 |
71 380
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 1 / ( 2 ↑ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
382 |
381
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑧 ∈ ℕ ) → ( 1 / ( 2 ↑ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
383 |
375 382
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑧 ∈ ran 𝑓 ) → ( 1 / ( 2 ↑ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
384 |
383
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ∀ 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
385 |
|
nfcv |
⊢ Ⅎ 𝑧 ran 𝑓 |
386 |
385
|
esumcl |
⊢ ( ( ran 𝑓 ∈ V ∧ ∀ 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
387 |
372 384 386
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ∈ ( 0 [,] +∞ ) ) |
388 |
105 387
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ∈ ℝ* ) |
389 |
|
1xr |
⊢ 1 ∈ ℝ* |
390 |
389
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → 1 ∈ ℝ* ) |
391 |
71
|
sseli |
⊢ ( 𝑒 ∈ ℝ+ → 𝑒 ∈ ( 0 [,] +∞ ) ) |
392 |
391
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → 𝑒 ∈ ( 0 [,] +∞ ) ) |
393 |
|
elxrge0 |
⊢ ( 𝑒 ∈ ( 0 [,] +∞ ) ↔ ( 𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒 ) ) |
394 |
392 393
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ( 𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒 ) ) |
395 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) |
396 |
|
nnex |
⊢ ℕ ∈ V |
397 |
396
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → ℕ ∈ V ) |
398 |
395 397 381 373
|
esummono |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ≤ Σ* 𝑧 ∈ ℕ ( 1 / ( 2 ↑ 𝑧 ) ) ) |
399 |
|
oveq2 |
⊢ ( 𝑧 = 𝑤 → ( 2 ↑ 𝑧 ) = ( 2 ↑ 𝑤 ) ) |
400 |
399
|
oveq2d |
⊢ ( 𝑧 = 𝑤 → ( 1 / ( 2 ↑ 𝑧 ) ) = ( 1 / ( 2 ↑ 𝑤 ) ) ) |
401 |
|
ioossico |
⊢ ( 0 (,) +∞ ) ⊆ ( 0 [,) +∞ ) |
402 |
69 401
|
eqsstri |
⊢ ℝ+ ⊆ ( 0 [,) +∞ ) |
403 |
402 380
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 1 / ( 2 ↑ 𝑧 ) ) ∈ ( 0 [,) +∞ ) ) |
404 |
|
eqidd |
⊢ ( 𝑧 ∈ ℕ → ( 𝑤 ∈ ℕ ↦ ( 1 / ( 2 ↑ 𝑤 ) ) ) = ( 𝑤 ∈ ℕ ↦ ( 1 / ( 2 ↑ 𝑤 ) ) ) ) |
405 |
|
simpr |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑤 = 𝑧 ) → 𝑤 = 𝑧 ) |
406 |
405
|
oveq2d |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑤 = 𝑧 ) → ( 2 ↑ 𝑤 ) = ( 2 ↑ 𝑧 ) ) |
407 |
406
|
oveq2d |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑤 = 𝑧 ) → ( 1 / ( 2 ↑ 𝑤 ) ) = ( 1 / ( 2 ↑ 𝑧 ) ) ) |
408 |
|
id |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℕ ) |
409 |
|
ovexd |
⊢ ( 𝑧 ∈ ℕ → ( 1 / ( 2 ↑ 𝑧 ) ) ∈ V ) |
410 |
404 407 408 409
|
fvmptd |
⊢ ( 𝑧 ∈ ℕ → ( ( 𝑤 ∈ ℕ ↦ ( 1 / ( 2 ↑ 𝑤 ) ) ) ‘ 𝑧 ) = ( 1 / ( 2 ↑ 𝑧 ) ) ) |
411 |
410
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( 𝑤 ∈ ℕ ↦ ( 1 / ( 2 ↑ 𝑤 ) ) ) ‘ 𝑧 ) = ( 1 / ( 2 ↑ 𝑧 ) ) ) |
412 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
413 |
|
eqid |
⊢ ( 𝑤 ∈ ℕ ↦ ( 1 / ( 2 ↑ 𝑤 ) ) ) = ( 𝑤 ∈ ℕ ↦ ( 1 / ( 2 ↑ 𝑤 ) ) ) |
414 |
413
|
geo2lim |
⊢ ( 1 ∈ ℂ → seq 1 ( + , ( 𝑤 ∈ ℕ ↦ ( 1 / ( 2 ↑ 𝑤 ) ) ) ) ⇝ 1 ) |
415 |
412 414
|
ax-mp |
⊢ seq 1 ( + , ( 𝑤 ∈ ℕ ↦ ( 1 / ( 2 ↑ 𝑤 ) ) ) ) ⇝ 1 |
416 |
415
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → seq 1 ( + , ( 𝑤 ∈ ℕ ↦ ( 1 / ( 2 ↑ 𝑤 ) ) ) ) ⇝ 1 ) |
417 |
|
1re |
⊢ 1 ∈ ℝ |
418 |
417
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → 1 ∈ ℝ ) |
419 |
400 403 411 416 418
|
esumcvgsum |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → Σ* 𝑧 ∈ ℕ ( 1 / ( 2 ↑ 𝑧 ) ) = Σ 𝑧 ∈ ℕ ( 1 / ( 2 ↑ 𝑧 ) ) ) |
420 |
|
geoihalfsum |
⊢ Σ 𝑧 ∈ ℕ ( 1 / ( 2 ↑ 𝑧 ) ) = 1 |
421 |
419 420
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → Σ* 𝑧 ∈ ℕ ( 1 / ( 2 ↑ 𝑧 ) ) = 1 ) |
422 |
398 421
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ≤ 1 ) |
423 |
422
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ≤ 1 ) |
424 |
|
xlemul2a |
⊢ ( ( ( Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( 𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒 ) ) ∧ Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ≤ 1 ) → ( 𝑒 ·e Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ) ≤ ( 𝑒 ·e 1 ) ) |
425 |
388 390 394 423 424
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ( 𝑒 ·e Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ) ≤ ( 𝑒 ·e 1 ) ) |
426 |
17 23
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) |
427 |
426 25
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) |
428 |
76
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → 𝑒 ∈ ℂ ) |
429 |
78
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ∈ ℂ ) |
430 |
429
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ∈ ℂ ) |
431 |
|
2cn |
⊢ 2 ∈ ℂ |
432 |
431
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → 2 ∈ ℂ ) |
433 |
|
2ne0 |
⊢ 2 ≠ 0 |
434 |
433
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → 2 ≠ 0 ) |
435 |
432 434 60
|
expne0d |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ≠ 0 ) |
436 |
435
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ≠ 0 ) |
437 |
428 430 436
|
divrecd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) = ( 𝑒 · ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
438 |
|
1rp |
⊢ 1 ∈ ℝ+ |
439 |
438
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → 1 ∈ ℝ+ ) |
440 |
439 61
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ+ ) |
441 |
52 440
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ ) |
442 |
441
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ ) |
443 |
|
rexmul |
⊢ ( ( 𝑒 ∈ ℝ ∧ ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ ) → ( 𝑒 ·e ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) = ( 𝑒 · ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
444 |
76 442 443
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑒 ·e ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) = ( 𝑒 · ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
445 |
437 444
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) = ( 𝑒 ·e ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
446 |
445
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ∀ 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) = ( 𝑒 ·e ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
447 |
427 446
|
esumeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) = Σ* 𝑦 ∈ 𝑋 ( 𝑒 ·e ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
448 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → 𝑋 ∈ V ) |
449 |
71 440
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ( 0 [,] +∞ ) ) |
450 |
449
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ( 0 [,] +∞ ) ) |
451 |
402
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → ℝ+ ⊆ ( 0 [,) +∞ ) ) |
452 |
451
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → 𝑒 ∈ ( 0 [,) +∞ ) ) |
453 |
448 450 452
|
esummulc2 |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ( 𝑒 ·e Σ* 𝑦 ∈ 𝑋 ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) = Σ* 𝑦 ∈ 𝑋 ( 𝑒 ·e ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
454 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 1 / ( 2 ↑ 𝑧 ) ) |
455 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( 2 ↑ 𝑧 ) = ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) |
456 |
455
|
oveq2d |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( 1 / ( 2 ↑ 𝑧 ) ) = ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) |
457 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → 𝑋 ∈ V ) |
458 |
56
|
simprbi |
⊢ ( 𝑓 : 𝑋 –1-1→ ℕ → Fun ◡ 𝑓 ) |
459 |
57
|
feqmptd |
⊢ ( 𝑓 : 𝑋 –1-1→ ℕ → 𝑓 = ( 𝑦 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
460 |
459
|
cnveqd |
⊢ ( 𝑓 : 𝑋 –1-1→ ℕ → ◡ 𝑓 = ◡ ( 𝑦 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
461 |
460
|
funeqd |
⊢ ( 𝑓 : 𝑋 –1-1→ ℕ → ( Fun ◡ 𝑓 ↔ Fun ◡ ( 𝑦 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑦 ) ) ) ) |
462 |
458 461
|
mpbid |
⊢ ( 𝑓 : 𝑋 –1-1→ ℕ → Fun ◡ ( 𝑦 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
463 |
462
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → Fun ◡ ( 𝑦 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
464 |
454 426 18 456 457 463 449 59
|
esumc |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → Σ* 𝑦 ∈ 𝑋 ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) = Σ* 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑓 ‘ 𝑦 ) } ( 1 / ( 2 ↑ 𝑧 ) ) ) |
465 |
|
ffn |
⊢ ( 𝑓 : 𝑋 ⟶ ℕ → 𝑓 Fn 𝑋 ) |
466 |
|
fnrnfv |
⊢ ( 𝑓 Fn 𝑋 → ran 𝑓 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑓 ‘ 𝑦 ) } ) |
467 |
58 465 466
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → ran 𝑓 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑓 ‘ 𝑦 ) } ) |
468 |
395 467
|
esumeq1d |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) = Σ* 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑓 ‘ 𝑦 ) } ( 1 / ( 2 ↑ 𝑧 ) ) ) |
469 |
464 468
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → Σ* 𝑦 ∈ 𝑋 ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) = Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ) |
470 |
469
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → Σ* 𝑦 ∈ 𝑋 ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) = Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ) |
471 |
470
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ( 𝑒 ·e Σ* 𝑦 ∈ 𝑋 ( 1 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) = ( 𝑒 ·e Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ) ) |
472 |
447 453 471
|
3eqtr2rd |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ( 𝑒 ·e Σ* 𝑧 ∈ ran 𝑓 ( 1 / ( 2 ↑ 𝑧 ) ) ) = Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) |
473 |
394
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → 𝑒 ∈ ℝ* ) |
474 |
|
xmulid1 |
⊢ ( 𝑒 ∈ ℝ* → ( 𝑒 ·e 1 ) = 𝑒 ) |
475 |
473 474
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ( 𝑒 ·e 1 ) = 𝑒 ) |
476 |
425 472 475
|
3brtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ≤ 𝑒 ) |
477 |
164 369 204 476
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ≤ 𝑒 ) |
478 |
|
xleadd2a |
⊢ ( ( ( Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ∈ ℝ* ∧ 𝑒 ∈ ℝ* ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ) ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ≤ 𝑒 ) → ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 𝑒 ) ) |
479 |
368 205 203 477 478
|
syl31anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 Σ* 𝑦 ∈ 𝑋 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 𝑒 ) ) |
480 |
363 479
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 𝑒 ) ) |
481 |
309 330 206 361 480
|
xrletrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑦 ∈ 𝑋 Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 𝑒 ) ) |
482 |
201 309 206 321 481
|
xrletrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → Σ* 𝑐 ∈ ∪ ran 𝑔 ( 𝑅 ‘ 𝑐 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 𝑒 ) ) |
483 |
176 201 206 280 482
|
xrletrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 𝑒 ) ) |
484 |
204
|
rpred |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → 𝑒 ∈ ℝ ) |
485 |
|
rexadd |
⊢ ( ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ∧ 𝑒 ∈ ℝ ) → ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 𝑒 ) = ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) + 𝑒 ) ) |
486 |
202 484 485
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) +𝑒 𝑒 ) = ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) + 𝑒 ) ) |
487 |
483 486
|
breqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) + 𝑒 ) ) |
488 |
487
|
anasss |
⊢ ( ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) + 𝑒 ) ) |
489 |
488
|
ex |
⊢ ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ( ( 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) + 𝑒 ) ) ) |
490 |
489
|
exlimdv |
⊢ ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑔 ( 𝑔 : 𝑋 ⟶ { 𝑧 ∈ 𝒫 dom 𝑅 ∣ 𝑧 ≼ ω } ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐴 ⊆ ∪ ( 𝑔 ‘ 𝑦 ) ∧ Σ* 𝑤 ∈ ( 𝑔 ‘ 𝑦 ) ( 𝑅 ‘ 𝑤 ) < ( ( 𝑀 ‘ 𝐴 ) + ( 𝑒 / ( 2 ↑ ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) + 𝑒 ) ) ) |
491 |
163 490
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) ∧ 𝑒 ∈ ℝ+ ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) + 𝑒 ) ) |
492 |
491
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → ∀ 𝑒 ∈ ℝ+ ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) + 𝑒 ) ) |
493 |
|
xralrple |
⊢ ( ( ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ∈ ℝ* ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ↔ ∀ 𝑒 ∈ ℝ+ ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) + 𝑒 ) ) ) |
494 |
175 493
|
sylan |
⊢ ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ↔ ∀ 𝑒 ∈ ℝ+ ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) + 𝑒 ) ) ) |
495 |
494
|
adantr |
⊢ ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → ( ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ↔ ∀ 𝑒 ∈ ℝ+ ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) + 𝑒 ) ) ) |
496 |
492 495
|
mpbird |
⊢ ( ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : 𝑋 –1-1→ ℕ ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ) |
497 |
496
|
ex |
⊢ ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → ( 𝑓 : 𝑋 –1-1→ ℕ → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ) ) |
498 |
497
|
exlimdv |
⊢ ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → ( ∃ 𝑓 𝑓 : 𝑋 –1-1→ ℕ → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ) ) |
499 |
12 498
|
mpd |
⊢ ( ( 𝜑 ∧ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ) |
500 |
175
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ∈ ℝ* ) |
501 |
|
pnfge |
⊢ ( ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ∈ ℝ* → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ +∞ ) |
502 |
500 501
|
syl |
⊢ ( ( 𝜑 ∧ ¬ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ +∞ ) |
503 |
46
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
504 |
18
|
esumcl |
⊢ ( ( 𝑋 ∈ V ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
505 |
15 503 504
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
506 |
|
xrge0nre |
⊢ ( ( Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ∧ ¬ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) = +∞ ) |
507 |
505 506
|
sylan |
⊢ ( ( 𝜑 ∧ ¬ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) = +∞ ) |
508 |
502 507
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ¬ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ) |
509 |
499 508
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑋 𝐴 ) ≤ Σ* 𝑦 ∈ 𝑋 ( 𝑀 ‘ 𝐴 ) ) |