Metamath Proof Explorer


Theorem esumaddf

Description: Addition of infinite sums. (Contributed by Thierry Arnoux, 22-Jun-2017)

Ref Expression
Hypotheses esumaddf.0 𝑘 𝜑
esumaddf.a 𝑘 𝐴
esumaddf.1 ( 𝜑𝐴𝑉 )
esumaddf.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
esumaddf.3 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
Assertion esumaddf ( 𝜑 → Σ* 𝑘𝐴 ( 𝐵 +𝑒 𝐶 ) = ( Σ* 𝑘𝐴 𝐵 +𝑒 Σ* 𝑘𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 esumaddf.0 𝑘 𝜑
2 esumaddf.a 𝑘 𝐴
3 esumaddf.1 ( 𝜑𝐴𝑉 )
4 esumaddf.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
5 esumaddf.3 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
6 ge0xaddcl ( ( 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐵 +𝑒 𝐶 ) ∈ ( 0 [,] +∞ ) )
7 4 5 6 syl2anc ( ( 𝜑𝑘𝐴 ) → ( 𝐵 +𝑒 𝐶 ) ∈ ( 0 [,] +∞ ) )
8 xrge0base ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
9 xrge0plusg +𝑒 = ( +g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
10 xrge0cmn ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd
11 10 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd )
12 xrge0tmd ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopMnd
13 12 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopMnd )
14 nfcv 𝑘 ( 0 [,] +∞ )
15 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
16 1 2 14 4 15 fmptdF ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
17 eqid ( 𝑘𝐴𝐶 ) = ( 𝑘𝐴𝐶 )
18 1 2 14 5 17 fmptdF ( 𝜑 → ( 𝑘𝐴𝐶 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
19 1 2 3 4 esumel ( 𝜑 → Σ* 𝑘𝐴 𝐵 ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) )
20 1 2 3 5 esumel ( 𝜑 → Σ* 𝑘𝐴 𝐶 ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐶 ) ) )
21 8 9 11 13 3 16 18 19 20 tsmsadd ( 𝜑 → ( Σ* 𝑘𝐴 𝐵 +𝑒 Σ* 𝑘𝐴 𝐶 ) ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( ( 𝑘𝐴𝐵 ) ∘f +𝑒 ( 𝑘𝐴𝐶 ) ) ) )
22 eqidd ( 𝜑 → ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 ) )
23 eqidd ( 𝜑 → ( 𝑘𝐴𝐶 ) = ( 𝑘𝐴𝐶 ) )
24 1 2 3 4 5 22 23 offval2f ( 𝜑 → ( ( 𝑘𝐴𝐵 ) ∘f +𝑒 ( 𝑘𝐴𝐶 ) ) = ( 𝑘𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) )
25 24 oveq2d ( 𝜑 → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( ( 𝑘𝐴𝐵 ) ∘f +𝑒 ( 𝑘𝐴𝐶 ) ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) ) )
26 21 25 eleqtrd ( 𝜑 → ( Σ* 𝑘𝐴 𝐵 +𝑒 Σ* 𝑘𝐴 𝐶 ) ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) ) )
27 1 2 3 7 26 esumid ( 𝜑 → Σ* 𝑘𝐴 ( 𝐵 +𝑒 𝐶 ) = ( Σ* 𝑘𝐴 𝐵 +𝑒 Σ* 𝑘𝐴 𝐶 ) )