| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayley.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cayley.h | ⊢ 𝐻  =  ( SymGrp ‘ 𝑋 ) | 
						
							| 3 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  =  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) | 
						
							| 5 |  | eqid | ⊢ ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  =  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) | 
						
							| 6 | 1 2 3 4 5 | cayley | ⊢ ( 𝐺  ∈  Grp  →  ( ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  ∈  ( SubGrp ‘ 𝐻 )  ∧  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) : 𝑋 –1-1-onto→ ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) | 
						
							| 7 | 6 | simp1d | ⊢ ( 𝐺  ∈  Grp  →  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  ∈  ( SubGrp ‘ 𝐻 ) ) | 
						
							| 8 | 6 | simp2d | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) ) | 
						
							| 9 | 6 | simp3d | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) : 𝑋 –1-1-onto→ ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) | 
						
							| 10 |  | f1oeq1 | ⊢ ( 𝑓  =  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  →  ( 𝑓 : 𝑋 –1-1-onto→ ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  ↔  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) : 𝑋 –1-1-onto→ ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) | 
						
							| 11 | 10 | rspcev | ⊢ ( ( ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) : 𝑋 –1-1-onto→ ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) )  →  ∃ 𝑓  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) 𝑓 : 𝑋 –1-1-onto→ ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) | 
						
							| 12 | 8 9 11 | syl2anc | ⊢ ( 𝐺  ∈  Grp  →  ∃ 𝑓  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) 𝑓 : 𝑋 –1-1-onto→ ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑠  =  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  →  ( 𝐻  ↾s  𝑠 )  =  ( 𝐻  ↾s  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑠  =  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  →  ( 𝐺  GrpHom  ( 𝐻  ↾s  𝑠 ) )  =  ( 𝐺  GrpHom  ( 𝐻  ↾s  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) ) | 
						
							| 15 |  | f1oeq3 | ⊢ ( 𝑠  =  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  →  ( 𝑓 : 𝑋 –1-1-onto→ 𝑠  ↔  𝑓 : 𝑋 –1-1-onto→ ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) | 
						
							| 16 | 14 15 | rexeqbidv | ⊢ ( 𝑠  =  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  →  ( ∃ 𝑓  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  𝑠 ) ) 𝑓 : 𝑋 –1-1-onto→ 𝑠  ↔  ∃ 𝑓  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) 𝑓 : 𝑋 –1-1-onto→ ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) | 
						
							| 17 | 16 | rspcev | ⊢ ( ( ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) )  ∈  ( SubGrp ‘ 𝐻 )  ∧  ∃ 𝑓  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) 𝑓 : 𝑋 –1-1-onto→ ran  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) )  →  ∃ 𝑠  ∈  ( SubGrp ‘ 𝐻 ) ∃ 𝑓  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  𝑠 ) ) 𝑓 : 𝑋 –1-1-onto→ 𝑠 ) | 
						
							| 18 | 7 12 17 | syl2anc | ⊢ ( 𝐺  ∈  Grp  →  ∃ 𝑠  ∈  ( SubGrp ‘ 𝐻 ) ∃ 𝑓  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  𝑠 ) ) 𝑓 : 𝑋 –1-1-onto→ 𝑠 ) |