Step |
Hyp |
Ref |
Expression |
1 |
|
cayley.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
cayley.h |
⊢ 𝐻 = ( SymGrp ‘ 𝑋 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
5 |
|
eqid |
⊢ ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) = ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
6 |
1 2 3 4 5
|
cayley |
⊢ ( 𝐺 ∈ Grp → ( ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ∧ ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ∈ ( 𝐺 GrpHom ( 𝐻 ↾s ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) ∧ ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) : 𝑋 –1-1-onto→ ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) |
7 |
6
|
simp1d |
⊢ ( 𝐺 ∈ Grp → ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ) |
8 |
6
|
simp2d |
⊢ ( 𝐺 ∈ Grp → ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ∈ ( 𝐺 GrpHom ( 𝐻 ↾s ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) ) |
9 |
6
|
simp3d |
⊢ ( 𝐺 ∈ Grp → ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) : 𝑋 –1-1-onto→ ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) |
10 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) → ( 𝑓 : 𝑋 –1-1-onto→ ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ↔ ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) : 𝑋 –1-1-onto→ ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) |
11 |
10
|
rspcev |
⊢ ( ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ∈ ( 𝐺 GrpHom ( 𝐻 ↾s ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) ∧ ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) : 𝑋 –1-1-onto→ ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) → ∃ 𝑓 ∈ ( 𝐺 GrpHom ( 𝐻 ↾s ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) 𝑓 : 𝑋 –1-1-onto→ ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) |
12 |
8 9 11
|
syl2anc |
⊢ ( 𝐺 ∈ Grp → ∃ 𝑓 ∈ ( 𝐺 GrpHom ( 𝐻 ↾s ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) 𝑓 : 𝑋 –1-1-onto→ ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑠 = ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) → ( 𝐻 ↾s 𝑠 ) = ( 𝐻 ↾s ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑠 = ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) → ( 𝐺 GrpHom ( 𝐻 ↾s 𝑠 ) ) = ( 𝐺 GrpHom ( 𝐻 ↾s ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) ) |
15 |
|
f1oeq3 |
⊢ ( 𝑠 = ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) → ( 𝑓 : 𝑋 –1-1-onto→ 𝑠 ↔ 𝑓 : 𝑋 –1-1-onto→ ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) |
16 |
14 15
|
rexeqbidv |
⊢ ( 𝑠 = ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) → ( ∃ 𝑓 ∈ ( 𝐺 GrpHom ( 𝐻 ↾s 𝑠 ) ) 𝑓 : 𝑋 –1-1-onto→ 𝑠 ↔ ∃ 𝑓 ∈ ( 𝐺 GrpHom ( 𝐻 ↾s ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) 𝑓 : 𝑋 –1-1-onto→ ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) |
17 |
16
|
rspcev |
⊢ ( ( ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ∧ ∃ 𝑓 ∈ ( 𝐺 GrpHom ( 𝐻 ↾s ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) ) 𝑓 : 𝑋 –1-1-onto→ ran ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑎 ) ) ) ) → ∃ 𝑠 ∈ ( SubGrp ‘ 𝐻 ) ∃ 𝑓 ∈ ( 𝐺 GrpHom ( 𝐻 ↾s 𝑠 ) ) 𝑓 : 𝑋 –1-1-onto→ 𝑠 ) |
18 |
7 12 17
|
syl2anc |
⊢ ( 𝐺 ∈ Grp → ∃ 𝑠 ∈ ( SubGrp ‘ 𝐻 ) ∃ 𝑓 ∈ ( 𝐺 GrpHom ( 𝐻 ↾s 𝑠 ) ) 𝑓 : 𝑋 –1-1-onto→ 𝑠 ) |