| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayley.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cayley.h | ⊢ 𝐻  =  ( SymGrp ‘ 𝑋 ) | 
						
							| 3 |  | cayley.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | cayley.f | ⊢ 𝐹  =  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔  +  𝑎 ) ) ) | 
						
							| 5 |  | cayley.s | ⊢ 𝑆  =  ran  𝐹 | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 8 | 1 3 6 2 7 4 | cayleylem1 | ⊢ ( 𝐺  ∈  Grp  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 9 |  | ghmrn | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  ran  𝐹  ∈  ( SubGrp ‘ 𝐻 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐺  ∈  Grp  →  ran  𝐹  ∈  ( SubGrp ‘ 𝐻 ) ) | 
						
							| 11 | 5 10 | eqeltrid | ⊢ ( 𝐺  ∈  Grp  →  𝑆  ∈  ( SubGrp ‘ 𝐻 ) ) | 
						
							| 12 | 5 | eqimss2i | ⊢ ran  𝐹  ⊆  𝑆 | 
						
							| 13 |  | eqid | ⊢ ( 𝐻  ↾s  𝑆 )  =  ( 𝐻  ↾s  𝑆 ) | 
						
							| 14 | 13 | resghm2b | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐻 )  ∧  ran  𝐹  ⊆  𝑆 )  →  ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ↔  𝐹  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  𝑆 ) ) ) ) | 
						
							| 15 | 11 12 14 | sylancl | ⊢ ( 𝐺  ∈  Grp  →  ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ↔  𝐹  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  𝑆 ) ) ) ) | 
						
							| 16 | 8 15 | mpbid | ⊢ ( 𝐺  ∈  Grp  →  𝐹  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  𝑆 ) ) ) | 
						
							| 17 | 1 3 6 2 7 4 | cayleylem2 | ⊢ ( 𝐺  ∈  Grp  →  𝐹 : 𝑋 –1-1→ ( Base ‘ 𝐻 ) ) | 
						
							| 18 |  | f1f1orn | ⊢ ( 𝐹 : 𝑋 –1-1→ ( Base ‘ 𝐻 )  →  𝐹 : 𝑋 –1-1-onto→ ran  𝐹 ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝐺  ∈  Grp  →  𝐹 : 𝑋 –1-1-onto→ ran  𝐹 ) | 
						
							| 20 |  | f1oeq3 | ⊢ ( 𝑆  =  ran  𝐹  →  ( 𝐹 : 𝑋 –1-1-onto→ 𝑆  ↔  𝐹 : 𝑋 –1-1-onto→ ran  𝐹 ) ) | 
						
							| 21 | 5 20 | ax-mp | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑆  ↔  𝐹 : 𝑋 –1-1-onto→ ran  𝐹 ) | 
						
							| 22 | 19 21 | sylibr | ⊢ ( 𝐺  ∈  Grp  →  𝐹 : 𝑋 –1-1-onto→ 𝑆 ) | 
						
							| 23 | 11 16 22 | 3jca | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐻 )  ∧  𝐹  ∈  ( 𝐺  GrpHom  ( 𝐻  ↾s  𝑆 ) )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑆 ) ) |