| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayley.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
cayley.h |
⊢ 𝐻 = ( SymGrp ‘ 𝑋 ) |
| 3 |
|
cayley.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
cayley.f |
⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) |
| 5 |
|
cayley.s |
⊢ 𝑆 = ran 𝐹 |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 8 |
1 3 6 2 7 4
|
cayleylem1 |
⊢ ( 𝐺 ∈ Grp → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 9 |
|
ghmrn |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ran 𝐹 ∈ ( SubGrp ‘ 𝐻 ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐺 ∈ Grp → ran 𝐹 ∈ ( SubGrp ‘ 𝐻 ) ) |
| 11 |
5 10
|
eqeltrid |
⊢ ( 𝐺 ∈ Grp → 𝑆 ∈ ( SubGrp ‘ 𝐻 ) ) |
| 12 |
5
|
eqimss2i |
⊢ ran 𝐹 ⊆ 𝑆 |
| 13 |
|
eqid |
⊢ ( 𝐻 ↾s 𝑆 ) = ( 𝐻 ↾s 𝑆 ) |
| 14 |
13
|
resghm2b |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐻 ) ∧ ran 𝐹 ⊆ 𝑆 ) → ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ↔ 𝐹 ∈ ( 𝐺 GrpHom ( 𝐻 ↾s 𝑆 ) ) ) ) |
| 15 |
11 12 14
|
sylancl |
⊢ ( 𝐺 ∈ Grp → ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ↔ 𝐹 ∈ ( 𝐺 GrpHom ( 𝐻 ↾s 𝑆 ) ) ) ) |
| 16 |
8 15
|
mpbid |
⊢ ( 𝐺 ∈ Grp → 𝐹 ∈ ( 𝐺 GrpHom ( 𝐻 ↾s 𝑆 ) ) ) |
| 17 |
1 3 6 2 7 4
|
cayleylem2 |
⊢ ( 𝐺 ∈ Grp → 𝐹 : 𝑋 –1-1→ ( Base ‘ 𝐻 ) ) |
| 18 |
|
f1f1orn |
⊢ ( 𝐹 : 𝑋 –1-1→ ( Base ‘ 𝐻 ) → 𝐹 : 𝑋 –1-1-onto→ ran 𝐹 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝐺 ∈ Grp → 𝐹 : 𝑋 –1-1-onto→ ran 𝐹 ) |
| 20 |
|
f1oeq3 |
⊢ ( 𝑆 = ran 𝐹 → ( 𝐹 : 𝑋 –1-1-onto→ 𝑆 ↔ 𝐹 : 𝑋 –1-1-onto→ ran 𝐹 ) ) |
| 21 |
5 20
|
ax-mp |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑆 ↔ 𝐹 : 𝑋 –1-1-onto→ ran 𝐹 ) |
| 22 |
19 21
|
sylibr |
⊢ ( 𝐺 ∈ Grp → 𝐹 : 𝑋 –1-1-onto→ 𝑆 ) |
| 23 |
11 16 22
|
3jca |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐻 ) ∧ 𝐹 ∈ ( 𝐺 GrpHom ( 𝐻 ↾s 𝑆 ) ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑆 ) ) |