Metamath Proof Explorer


Theorem cayley

Description: Cayley's Theorem (constructive version): given group G , F is an isomorphism between G and the subgroup S of the symmetric group H on the underlying set X of G . See also Theorem 3.15 in Rotman p. 42. (Contributed by Paul Chapman, 3-Mar-2008) (Proof shortened by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cayley.x 𝑋 = ( Base ‘ 𝐺 )
cayley.h 𝐻 = ( SymGrp ‘ 𝑋 )
cayley.p + = ( +g𝐺 )
cayley.f 𝐹 = ( 𝑔𝑋 ↦ ( 𝑎𝑋 ↦ ( 𝑔 + 𝑎 ) ) )
cayley.s 𝑆 = ran 𝐹
Assertion cayley ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐻 ) ∧ 𝐹 ∈ ( 𝐺 GrpHom ( 𝐻s 𝑆 ) ) ∧ 𝐹 : 𝑋1-1-onto𝑆 ) )

Proof

Step Hyp Ref Expression
1 cayley.x 𝑋 = ( Base ‘ 𝐺 )
2 cayley.h 𝐻 = ( SymGrp ‘ 𝑋 )
3 cayley.p + = ( +g𝐺 )
4 cayley.f 𝐹 = ( 𝑔𝑋 ↦ ( 𝑎𝑋 ↦ ( 𝑔 + 𝑎 ) ) )
5 cayley.s 𝑆 = ran 𝐹
6 eqid ( 0g𝐺 ) = ( 0g𝐺 )
7 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
8 1 3 6 2 7 4 cayleylem1 ( 𝐺 ∈ Grp → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
9 ghmrn ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ran 𝐹 ∈ ( SubGrp ‘ 𝐻 ) )
10 8 9 syl ( 𝐺 ∈ Grp → ran 𝐹 ∈ ( SubGrp ‘ 𝐻 ) )
11 5 10 eqeltrid ( 𝐺 ∈ Grp → 𝑆 ∈ ( SubGrp ‘ 𝐻 ) )
12 5 eqimss2i ran 𝐹𝑆
13 eqid ( 𝐻s 𝑆 ) = ( 𝐻s 𝑆 )
14 13 resghm2b ( ( 𝑆 ∈ ( SubGrp ‘ 𝐻 ) ∧ ran 𝐹𝑆 ) → ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ↔ 𝐹 ∈ ( 𝐺 GrpHom ( 𝐻s 𝑆 ) ) ) )
15 11 12 14 sylancl ( 𝐺 ∈ Grp → ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ↔ 𝐹 ∈ ( 𝐺 GrpHom ( 𝐻s 𝑆 ) ) ) )
16 8 15 mpbid ( 𝐺 ∈ Grp → 𝐹 ∈ ( 𝐺 GrpHom ( 𝐻s 𝑆 ) ) )
17 1 3 6 2 7 4 cayleylem2 ( 𝐺 ∈ Grp → 𝐹 : 𝑋1-1→ ( Base ‘ 𝐻 ) )
18 f1f1orn ( 𝐹 : 𝑋1-1→ ( Base ‘ 𝐻 ) → 𝐹 : 𝑋1-1-onto→ ran 𝐹 )
19 17 18 syl ( 𝐺 ∈ Grp → 𝐹 : 𝑋1-1-onto→ ran 𝐹 )
20 f1oeq3 ( 𝑆 = ran 𝐹 → ( 𝐹 : 𝑋1-1-onto𝑆𝐹 : 𝑋1-1-onto→ ran 𝐹 ) )
21 5 20 ax-mp ( 𝐹 : 𝑋1-1-onto𝑆𝐹 : 𝑋1-1-onto→ ran 𝐹 )
22 19 21 sylibr ( 𝐺 ∈ Grp → 𝐹 : 𝑋1-1-onto𝑆 )
23 11 16 22 3jca ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐻 ) ∧ 𝐹 ∈ ( 𝐺 GrpHom ( 𝐻s 𝑆 ) ) ∧ 𝐹 : 𝑋1-1-onto𝑆 ) )