Metamath Proof Explorer


Theorem cayley

Description: Cayley's Theorem (constructive version): given group G , F is an isomorphism between G and the subgroup S of the symmetric group H on the underlying set X of G . See also Theorem 3.15 in Rotman p. 42. (Contributed by Paul Chapman, 3-Mar-2008) (Proof shortened by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cayley.x X=BaseG
cayley.h H=SymGrpX
cayley.p +˙=+G
cayley.f F=gXaXg+˙a
cayley.s S=ranF
Assertion cayley GGrpSSubGrpHFGGrpHomH𝑠SF:X1-1 ontoS

Proof

Step Hyp Ref Expression
1 cayley.x X=BaseG
2 cayley.h H=SymGrpX
3 cayley.p +˙=+G
4 cayley.f F=gXaXg+˙a
5 cayley.s S=ranF
6 eqid 0G=0G
7 eqid BaseH=BaseH
8 1 3 6 2 7 4 cayleylem1 GGrpFGGrpHomH
9 ghmrn FGGrpHomHranFSubGrpH
10 8 9 syl GGrpranFSubGrpH
11 5 10 eqeltrid GGrpSSubGrpH
12 5 eqimss2i ranFS
13 eqid H𝑠S=H𝑠S
14 13 resghm2b SSubGrpHranFSFGGrpHomHFGGrpHomH𝑠S
15 11 12 14 sylancl GGrpFGGrpHomHFGGrpHomH𝑠S
16 8 15 mpbid GGrpFGGrpHomH𝑠S
17 1 3 6 2 7 4 cayleylem2 GGrpF:X1-1BaseH
18 f1f1orn F:X1-1BaseHF:X1-1 ontoranF
19 17 18 syl GGrpF:X1-1 ontoranF
20 f1oeq3 S=ranFF:X1-1 ontoSF:X1-1 ontoranF
21 5 20 ax-mp F:X1-1 ontoSF:X1-1 ontoranF
22 19 21 sylibr GGrpF:X1-1 ontoS
23 11 16 22 3jca GGrpSSubGrpHFGGrpHomH𝑠SF:X1-1 ontoS