Metamath Proof Explorer


Theorem cayley

Description: Cayley's Theorem (constructive version): given group G , F is an isomorphism between G and the subgroup S of the symmetric group H on the underlying set X of G . See also Theorem 3.15 in Rotman p. 42. (Contributed by Paul Chapman, 3-Mar-2008) (Proof shortened by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cayley.x X = Base G
cayley.h H = SymGrp X
cayley.p + ˙ = + G
cayley.f F = g X a X g + ˙ a
cayley.s S = ran F
Assertion cayley G Grp S SubGrp H F G GrpHom H 𝑠 S F : X 1-1 onto S

Proof

Step Hyp Ref Expression
1 cayley.x X = Base G
2 cayley.h H = SymGrp X
3 cayley.p + ˙ = + G
4 cayley.f F = g X a X g + ˙ a
5 cayley.s S = ran F
6 eqid 0 G = 0 G
7 eqid Base H = Base H
8 1 3 6 2 7 4 cayleylem1 G Grp F G GrpHom H
9 ghmrn F G GrpHom H ran F SubGrp H
10 8 9 syl G Grp ran F SubGrp H
11 5 10 eqeltrid G Grp S SubGrp H
12 5 eqimss2i ran F S
13 eqid H 𝑠 S = H 𝑠 S
14 13 resghm2b S SubGrp H ran F S F G GrpHom H F G GrpHom H 𝑠 S
15 11 12 14 sylancl G Grp F G GrpHom H F G GrpHom H 𝑠 S
16 8 15 mpbid G Grp F G GrpHom H 𝑠 S
17 1 3 6 2 7 4 cayleylem2 G Grp F : X 1-1 Base H
18 f1f1orn F : X 1-1 Base H F : X 1-1 onto ran F
19 17 18 syl G Grp F : X 1-1 onto ran F
20 f1oeq3 S = ran F F : X 1-1 onto S F : X 1-1 onto ran F
21 5 20 ax-mp F : X 1-1 onto S F : X 1-1 onto ran F
22 19 21 sylibr G Grp F : X 1-1 onto S
23 11 16 22 3jca G Grp S SubGrp H F G GrpHom H 𝑠 S F : X 1-1 onto S