Description: Cayley's Theorem (constructive version): given group G , F is an isomorphism between G and the subgroup S of the symmetric group H on the underlying set X of G . See also Theorem 3.15 in Rotman p. 42. (Contributed by Paul Chapman, 3-Mar-2008) (Proof shortened by Mario Carneiro, 13-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cayley.x | |
|
cayley.h | |
||
cayley.p | |
||
cayley.f | |
||
cayley.s | |
||
Assertion | cayley | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayley.x | |
|
2 | cayley.h | |
|
3 | cayley.p | |
|
4 | cayley.f | |
|
5 | cayley.s | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 1 3 6 2 7 4 | cayleylem1 | |
9 | ghmrn | |
|
10 | 8 9 | syl | |
11 | 5 10 | eqeltrid | |
12 | 5 | eqimss2i | |
13 | eqid | |
|
14 | 13 | resghm2b | |
15 | 11 12 14 | sylancl | |
16 | 8 15 | mpbid | |
17 | 1 3 6 2 7 4 | cayleylem2 | |
18 | f1f1orn | |
|
19 | 17 18 | syl | |
20 | f1oeq3 | |
|
21 | 5 20 | ax-mp | |
22 | 19 21 | sylibr | |
23 | 11 16 22 | 3jca | |