| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayley.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | cayley.h |  |-  H = ( SymGrp ` X ) | 
						
							| 3 |  | cayley.p |  |-  .+ = ( +g ` G ) | 
						
							| 4 |  | cayley.f |  |-  F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) ) | 
						
							| 5 |  | cayley.s |  |-  S = ran F | 
						
							| 6 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 7 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 8 | 1 3 6 2 7 4 | cayleylem1 |  |-  ( G e. Grp -> F e. ( G GrpHom H ) ) | 
						
							| 9 |  | ghmrn |  |-  ( F e. ( G GrpHom H ) -> ran F e. ( SubGrp ` H ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( G e. Grp -> ran F e. ( SubGrp ` H ) ) | 
						
							| 11 | 5 10 | eqeltrid |  |-  ( G e. Grp -> S e. ( SubGrp ` H ) ) | 
						
							| 12 | 5 | eqimss2i |  |-  ran F C_ S | 
						
							| 13 |  | eqid |  |-  ( H |`s S ) = ( H |`s S ) | 
						
							| 14 | 13 | resghm2b |  |-  ( ( S e. ( SubGrp ` H ) /\ ran F C_ S ) -> ( F e. ( G GrpHom H ) <-> F e. ( G GrpHom ( H |`s S ) ) ) ) | 
						
							| 15 | 11 12 14 | sylancl |  |-  ( G e. Grp -> ( F e. ( G GrpHom H ) <-> F e. ( G GrpHom ( H |`s S ) ) ) ) | 
						
							| 16 | 8 15 | mpbid |  |-  ( G e. Grp -> F e. ( G GrpHom ( H |`s S ) ) ) | 
						
							| 17 | 1 3 6 2 7 4 | cayleylem2 |  |-  ( G e. Grp -> F : X -1-1-> ( Base ` H ) ) | 
						
							| 18 |  | f1f1orn |  |-  ( F : X -1-1-> ( Base ` H ) -> F : X -1-1-onto-> ran F ) | 
						
							| 19 | 17 18 | syl |  |-  ( G e. Grp -> F : X -1-1-onto-> ran F ) | 
						
							| 20 |  | f1oeq3 |  |-  ( S = ran F -> ( F : X -1-1-onto-> S <-> F : X -1-1-onto-> ran F ) ) | 
						
							| 21 | 5 20 | ax-mp |  |-  ( F : X -1-1-onto-> S <-> F : X -1-1-onto-> ran F ) | 
						
							| 22 | 19 21 | sylibr |  |-  ( G e. Grp -> F : X -1-1-onto-> S ) | 
						
							| 23 | 11 16 22 | 3jca |  |-  ( G e. Grp -> ( S e. ( SubGrp ` H ) /\ F e. ( G GrpHom ( H |`s S ) ) /\ F : X -1-1-onto-> S ) ) |