Metamath Proof Explorer


Theorem cayley

Description: Cayley's Theorem (constructive version): given group G , F is an isomorphism between G and the subgroup S of the symmetric group H on the underlying set X of G . See also Theorem 3.15 in Rotman p. 42. (Contributed by Paul Chapman, 3-Mar-2008) (Proof shortened by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cayley.x
|- X = ( Base ` G )
cayley.h
|- H = ( SymGrp ` X )
cayley.p
|- .+ = ( +g ` G )
cayley.f
|- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) )
cayley.s
|- S = ran F
Assertion cayley
|- ( G e. Grp -> ( S e. ( SubGrp ` H ) /\ F e. ( G GrpHom ( H |`s S ) ) /\ F : X -1-1-onto-> S ) )

Proof

Step Hyp Ref Expression
1 cayley.x
 |-  X = ( Base ` G )
2 cayley.h
 |-  H = ( SymGrp ` X )
3 cayley.p
 |-  .+ = ( +g ` G )
4 cayley.f
 |-  F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) )
5 cayley.s
 |-  S = ran F
6 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
7 eqid
 |-  ( Base ` H ) = ( Base ` H )
8 1 3 6 2 7 4 cayleylem1
 |-  ( G e. Grp -> F e. ( G GrpHom H ) )
9 ghmrn
 |-  ( F e. ( G GrpHom H ) -> ran F e. ( SubGrp ` H ) )
10 8 9 syl
 |-  ( G e. Grp -> ran F e. ( SubGrp ` H ) )
11 5 10 eqeltrid
 |-  ( G e. Grp -> S e. ( SubGrp ` H ) )
12 5 eqimss2i
 |-  ran F C_ S
13 eqid
 |-  ( H |`s S ) = ( H |`s S )
14 13 resghm2b
 |-  ( ( S e. ( SubGrp ` H ) /\ ran F C_ S ) -> ( F e. ( G GrpHom H ) <-> F e. ( G GrpHom ( H |`s S ) ) ) )
15 11 12 14 sylancl
 |-  ( G e. Grp -> ( F e. ( G GrpHom H ) <-> F e. ( G GrpHom ( H |`s S ) ) ) )
16 8 15 mpbid
 |-  ( G e. Grp -> F e. ( G GrpHom ( H |`s S ) ) )
17 1 3 6 2 7 4 cayleylem2
 |-  ( G e. Grp -> F : X -1-1-> ( Base ` H ) )
18 f1f1orn
 |-  ( F : X -1-1-> ( Base ` H ) -> F : X -1-1-onto-> ran F )
19 17 18 syl
 |-  ( G e. Grp -> F : X -1-1-onto-> ran F )
20 f1oeq3
 |-  ( S = ran F -> ( F : X -1-1-onto-> S <-> F : X -1-1-onto-> ran F ) )
21 5 20 ax-mp
 |-  ( F : X -1-1-onto-> S <-> F : X -1-1-onto-> ran F )
22 19 21 sylibr
 |-  ( G e. Grp -> F : X -1-1-onto-> S )
23 11 16 22 3jca
 |-  ( G e. Grp -> ( S e. ( SubGrp ` H ) /\ F e. ( G GrpHom ( H |`s S ) ) /\ F : X -1-1-onto-> S ) )