Step |
Hyp |
Ref |
Expression |
1 |
|
cayley.x |
|- X = ( Base ` G ) |
2 |
|
cayley.h |
|- H = ( SymGrp ` X ) |
3 |
|
cayley.p |
|- .+ = ( +g ` G ) |
4 |
|
cayley.f |
|- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) ) |
5 |
|
cayley.s |
|- S = ran F |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
8 |
1 3 6 2 7 4
|
cayleylem1 |
|- ( G e. Grp -> F e. ( G GrpHom H ) ) |
9 |
|
ghmrn |
|- ( F e. ( G GrpHom H ) -> ran F e. ( SubGrp ` H ) ) |
10 |
8 9
|
syl |
|- ( G e. Grp -> ran F e. ( SubGrp ` H ) ) |
11 |
5 10
|
eqeltrid |
|- ( G e. Grp -> S e. ( SubGrp ` H ) ) |
12 |
5
|
eqimss2i |
|- ran F C_ S |
13 |
|
eqid |
|- ( H |`s S ) = ( H |`s S ) |
14 |
13
|
resghm2b |
|- ( ( S e. ( SubGrp ` H ) /\ ran F C_ S ) -> ( F e. ( G GrpHom H ) <-> F e. ( G GrpHom ( H |`s S ) ) ) ) |
15 |
11 12 14
|
sylancl |
|- ( G e. Grp -> ( F e. ( G GrpHom H ) <-> F e. ( G GrpHom ( H |`s S ) ) ) ) |
16 |
8 15
|
mpbid |
|- ( G e. Grp -> F e. ( G GrpHom ( H |`s S ) ) ) |
17 |
1 3 6 2 7 4
|
cayleylem2 |
|- ( G e. Grp -> F : X -1-1-> ( Base ` H ) ) |
18 |
|
f1f1orn |
|- ( F : X -1-1-> ( Base ` H ) -> F : X -1-1-onto-> ran F ) |
19 |
17 18
|
syl |
|- ( G e. Grp -> F : X -1-1-onto-> ran F ) |
20 |
|
f1oeq3 |
|- ( S = ran F -> ( F : X -1-1-onto-> S <-> F : X -1-1-onto-> ran F ) ) |
21 |
5 20
|
ax-mp |
|- ( F : X -1-1-onto-> S <-> F : X -1-1-onto-> ran F ) |
22 |
19 21
|
sylibr |
|- ( G e. Grp -> F : X -1-1-onto-> S ) |
23 |
11 16 22
|
3jca |
|- ( G e. Grp -> ( S e. ( SubGrp ` H ) /\ F e. ( G GrpHom ( H |`s S ) ) /\ F : X -1-1-onto-> S ) ) |