Metamath Proof Explorer


Theorem cayleylem2

Description: Lemma for cayley . (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cayleylem1.x
|- X = ( Base ` G )
cayleylem1.p
|- .+ = ( +g ` G )
cayleylem1.u
|- .0. = ( 0g ` G )
cayleylem1.h
|- H = ( SymGrp ` X )
cayleylem1.s
|- S = ( Base ` H )
cayleylem1.f
|- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) )
Assertion cayleylem2
|- ( G e. Grp -> F : X -1-1-> S )

Proof

Step Hyp Ref Expression
1 cayleylem1.x
 |-  X = ( Base ` G )
2 cayleylem1.p
 |-  .+ = ( +g ` G )
3 cayleylem1.u
 |-  .0. = ( 0g ` G )
4 cayleylem1.h
 |-  H = ( SymGrp ` X )
5 cayleylem1.s
 |-  S = ( Base ` H )
6 cayleylem1.f
 |-  F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) )
7 fveq1
 |-  ( ( F ` x ) = ( 0g ` H ) -> ( ( F ` x ) ` .0. ) = ( ( 0g ` H ) ` .0. ) )
8 simpr
 |-  ( ( G e. Grp /\ x e. X ) -> x e. X )
9 1 3 grpidcl
 |-  ( G e. Grp -> .0. e. X )
10 9 adantr
 |-  ( ( G e. Grp /\ x e. X ) -> .0. e. X )
11 6 1 grplactval
 |-  ( ( x e. X /\ .0. e. X ) -> ( ( F ` x ) ` .0. ) = ( x .+ .0. ) )
12 8 10 11 syl2anc
 |-  ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) ` .0. ) = ( x .+ .0. ) )
13 1 2 3 grprid
 |-  ( ( G e. Grp /\ x e. X ) -> ( x .+ .0. ) = x )
14 12 13 eqtrd
 |-  ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) ` .0. ) = x )
15 1 fvexi
 |-  X e. _V
16 4 symgid
 |-  ( X e. _V -> ( _I |` X ) = ( 0g ` H ) )
17 15 16 ax-mp
 |-  ( _I |` X ) = ( 0g ` H )
18 17 fveq1i
 |-  ( ( _I |` X ) ` .0. ) = ( ( 0g ` H ) ` .0. )
19 fvresi
 |-  ( .0. e. X -> ( ( _I |` X ) ` .0. ) = .0. )
20 10 19 syl
 |-  ( ( G e. Grp /\ x e. X ) -> ( ( _I |` X ) ` .0. ) = .0. )
21 18 20 eqtr3id
 |-  ( ( G e. Grp /\ x e. X ) -> ( ( 0g ` H ) ` .0. ) = .0. )
22 14 21 eqeq12d
 |-  ( ( G e. Grp /\ x e. X ) -> ( ( ( F ` x ) ` .0. ) = ( ( 0g ` H ) ` .0. ) <-> x = .0. ) )
23 7 22 syl5ib
 |-  ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) )
24 23 ralrimiva
 |-  ( G e. Grp -> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) )
25 1 2 3 4 5 6 cayleylem1
 |-  ( G e. Grp -> F e. ( G GrpHom H ) )
26 eqid
 |-  ( 0g ` H ) = ( 0g ` H )
27 1 5 3 26 ghmf1
 |-  ( F e. ( G GrpHom H ) -> ( F : X -1-1-> S <-> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) )
28 25 27 syl
 |-  ( G e. Grp -> ( F : X -1-1-> S <-> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) )
29 24 28 mpbird
 |-  ( G e. Grp -> F : X -1-1-> S )