| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayleylem1.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | cayleylem1.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | cayleylem1.u |  |-  .0. = ( 0g ` G ) | 
						
							| 4 |  | cayleylem1.h |  |-  H = ( SymGrp ` X ) | 
						
							| 5 |  | cayleylem1.s |  |-  S = ( Base ` H ) | 
						
							| 6 |  | cayleylem1.f |  |-  F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) ) | 
						
							| 7 |  | fveq1 |  |-  ( ( F ` x ) = ( 0g ` H ) -> ( ( F ` x ) ` .0. ) = ( ( 0g ` H ) ` .0. ) ) | 
						
							| 8 |  | simpr |  |-  ( ( G e. Grp /\ x e. X ) -> x e. X ) | 
						
							| 9 | 1 3 | grpidcl |  |-  ( G e. Grp -> .0. e. X ) | 
						
							| 10 | 9 | adantr |  |-  ( ( G e. Grp /\ x e. X ) -> .0. e. X ) | 
						
							| 11 | 6 1 | grplactval |  |-  ( ( x e. X /\ .0. e. X ) -> ( ( F ` x ) ` .0. ) = ( x .+ .0. ) ) | 
						
							| 12 | 8 10 11 | syl2anc |  |-  ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) ` .0. ) = ( x .+ .0. ) ) | 
						
							| 13 | 1 2 3 | grprid |  |-  ( ( G e. Grp /\ x e. X ) -> ( x .+ .0. ) = x ) | 
						
							| 14 | 12 13 | eqtrd |  |-  ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) ` .0. ) = x ) | 
						
							| 15 | 1 | fvexi |  |-  X e. _V | 
						
							| 16 | 4 | symgid |  |-  ( X e. _V -> ( _I |` X ) = ( 0g ` H ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( _I |` X ) = ( 0g ` H ) | 
						
							| 18 | 17 | fveq1i |  |-  ( ( _I |` X ) ` .0. ) = ( ( 0g ` H ) ` .0. ) | 
						
							| 19 |  | fvresi |  |-  ( .0. e. X -> ( ( _I |` X ) ` .0. ) = .0. ) | 
						
							| 20 | 10 19 | syl |  |-  ( ( G e. Grp /\ x e. X ) -> ( ( _I |` X ) ` .0. ) = .0. ) | 
						
							| 21 | 18 20 | eqtr3id |  |-  ( ( G e. Grp /\ x e. X ) -> ( ( 0g ` H ) ` .0. ) = .0. ) | 
						
							| 22 | 14 21 | eqeq12d |  |-  ( ( G e. Grp /\ x e. X ) -> ( ( ( F ` x ) ` .0. ) = ( ( 0g ` H ) ` .0. ) <-> x = .0. ) ) | 
						
							| 23 | 7 22 | imbitrid |  |-  ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) | 
						
							| 24 | 23 | ralrimiva |  |-  ( G e. Grp -> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) | 
						
							| 25 | 1 2 3 4 5 6 | cayleylem1 |  |-  ( G e. Grp -> F e. ( G GrpHom H ) ) | 
						
							| 26 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 27 | 1 5 3 26 | ghmf1 |  |-  ( F e. ( G GrpHom H ) -> ( F : X -1-1-> S <-> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) ) | 
						
							| 28 | 25 27 | syl |  |-  ( G e. Grp -> ( F : X -1-1-> S <-> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) ) | 
						
							| 29 | 24 28 | mpbird |  |-  ( G e. Grp -> F : X -1-1-> S ) |