Step |
Hyp |
Ref |
Expression |
1 |
|
cayleylem1.x |
|- X = ( Base ` G ) |
2 |
|
cayleylem1.p |
|- .+ = ( +g ` G ) |
3 |
|
cayleylem1.u |
|- .0. = ( 0g ` G ) |
4 |
|
cayleylem1.h |
|- H = ( SymGrp ` X ) |
5 |
|
cayleylem1.s |
|- S = ( Base ` H ) |
6 |
|
cayleylem1.f |
|- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) ) |
7 |
|
fveq1 |
|- ( ( F ` x ) = ( 0g ` H ) -> ( ( F ` x ) ` .0. ) = ( ( 0g ` H ) ` .0. ) ) |
8 |
|
simpr |
|- ( ( G e. Grp /\ x e. X ) -> x e. X ) |
9 |
1 3
|
grpidcl |
|- ( G e. Grp -> .0. e. X ) |
10 |
9
|
adantr |
|- ( ( G e. Grp /\ x e. X ) -> .0. e. X ) |
11 |
6 1
|
grplactval |
|- ( ( x e. X /\ .0. e. X ) -> ( ( F ` x ) ` .0. ) = ( x .+ .0. ) ) |
12 |
8 10 11
|
syl2anc |
|- ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) ` .0. ) = ( x .+ .0. ) ) |
13 |
1 2 3
|
grprid |
|- ( ( G e. Grp /\ x e. X ) -> ( x .+ .0. ) = x ) |
14 |
12 13
|
eqtrd |
|- ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) ` .0. ) = x ) |
15 |
1
|
fvexi |
|- X e. _V |
16 |
4
|
symgid |
|- ( X e. _V -> ( _I |` X ) = ( 0g ` H ) ) |
17 |
15 16
|
ax-mp |
|- ( _I |` X ) = ( 0g ` H ) |
18 |
17
|
fveq1i |
|- ( ( _I |` X ) ` .0. ) = ( ( 0g ` H ) ` .0. ) |
19 |
|
fvresi |
|- ( .0. e. X -> ( ( _I |` X ) ` .0. ) = .0. ) |
20 |
10 19
|
syl |
|- ( ( G e. Grp /\ x e. X ) -> ( ( _I |` X ) ` .0. ) = .0. ) |
21 |
18 20
|
eqtr3id |
|- ( ( G e. Grp /\ x e. X ) -> ( ( 0g ` H ) ` .0. ) = .0. ) |
22 |
14 21
|
eqeq12d |
|- ( ( G e. Grp /\ x e. X ) -> ( ( ( F ` x ) ` .0. ) = ( ( 0g ` H ) ` .0. ) <-> x = .0. ) ) |
23 |
7 22
|
syl5ib |
|- ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) |
24 |
23
|
ralrimiva |
|- ( G e. Grp -> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) |
25 |
1 2 3 4 5 6
|
cayleylem1 |
|- ( G e. Grp -> F e. ( G GrpHom H ) ) |
26 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
27 |
1 5 3 26
|
ghmf1 |
|- ( F e. ( G GrpHom H ) -> ( F : X -1-1-> S <-> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) ) |
28 |
25 27
|
syl |
|- ( G e. Grp -> ( F : X -1-1-> S <-> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) ) |
29 |
24 28
|
mpbird |
|- ( G e. Grp -> F : X -1-1-> S ) |