| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayleylem1.x |
|- X = ( Base ` G ) |
| 2 |
|
cayleylem1.p |
|- .+ = ( +g ` G ) |
| 3 |
|
cayleylem1.u |
|- .0. = ( 0g ` G ) |
| 4 |
|
cayleylem1.h |
|- H = ( SymGrp ` X ) |
| 5 |
|
cayleylem1.s |
|- S = ( Base ` H ) |
| 6 |
|
cayleylem1.f |
|- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) ) |
| 7 |
|
fveq1 |
|- ( ( F ` x ) = ( 0g ` H ) -> ( ( F ` x ) ` .0. ) = ( ( 0g ` H ) ` .0. ) ) |
| 8 |
|
simpr |
|- ( ( G e. Grp /\ x e. X ) -> x e. X ) |
| 9 |
1 3
|
grpidcl |
|- ( G e. Grp -> .0. e. X ) |
| 10 |
9
|
adantr |
|- ( ( G e. Grp /\ x e. X ) -> .0. e. X ) |
| 11 |
6 1
|
grplactval |
|- ( ( x e. X /\ .0. e. X ) -> ( ( F ` x ) ` .0. ) = ( x .+ .0. ) ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) ` .0. ) = ( x .+ .0. ) ) |
| 13 |
1 2 3
|
grprid |
|- ( ( G e. Grp /\ x e. X ) -> ( x .+ .0. ) = x ) |
| 14 |
12 13
|
eqtrd |
|- ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) ` .0. ) = x ) |
| 15 |
1
|
fvexi |
|- X e. _V |
| 16 |
4
|
symgid |
|- ( X e. _V -> ( _I |` X ) = ( 0g ` H ) ) |
| 17 |
15 16
|
ax-mp |
|- ( _I |` X ) = ( 0g ` H ) |
| 18 |
17
|
fveq1i |
|- ( ( _I |` X ) ` .0. ) = ( ( 0g ` H ) ` .0. ) |
| 19 |
|
fvresi |
|- ( .0. e. X -> ( ( _I |` X ) ` .0. ) = .0. ) |
| 20 |
10 19
|
syl |
|- ( ( G e. Grp /\ x e. X ) -> ( ( _I |` X ) ` .0. ) = .0. ) |
| 21 |
18 20
|
eqtr3id |
|- ( ( G e. Grp /\ x e. X ) -> ( ( 0g ` H ) ` .0. ) = .0. ) |
| 22 |
14 21
|
eqeq12d |
|- ( ( G e. Grp /\ x e. X ) -> ( ( ( F ` x ) ` .0. ) = ( ( 0g ` H ) ` .0. ) <-> x = .0. ) ) |
| 23 |
7 22
|
imbitrid |
|- ( ( G e. Grp /\ x e. X ) -> ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) |
| 24 |
23
|
ralrimiva |
|- ( G e. Grp -> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) |
| 25 |
1 2 3 4 5 6
|
cayleylem1 |
|- ( G e. Grp -> F e. ( G GrpHom H ) ) |
| 26 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
| 27 |
1 5 3 26
|
ghmf1 |
|- ( F e. ( G GrpHom H ) -> ( F : X -1-1-> S <-> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) ) |
| 28 |
25 27
|
syl |
|- ( G e. Grp -> ( F : X -1-1-> S <-> A. x e. X ( ( F ` x ) = ( 0g ` H ) -> x = .0. ) ) ) |
| 29 |
24 28
|
mpbird |
|- ( G e. Grp -> F : X -1-1-> S ) |