| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayleylem1.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cayleylem1.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | cayleylem1.u | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | cayleylem1.h | ⊢ 𝐻  =  ( SymGrp ‘ 𝑋 ) | 
						
							| 5 |  | cayleylem1.s | ⊢ 𝑆  =  ( Base ‘ 𝐻 ) | 
						
							| 6 |  | cayleylem1.f | ⊢ 𝐹  =  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔  +  𝑎 ) ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ( 0g ‘ 𝐻 )  →  ( ( 𝐹 ‘ 𝑥 ) ‘  0  )  =  ( ( 0g ‘ 𝐻 ) ‘  0  ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 9 | 1 3 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →   0   ∈  𝑋 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋 )  →   0   ∈  𝑋 ) | 
						
							| 11 | 6 1 | grplactval | ⊢ ( ( 𝑥  ∈  𝑋  ∧   0   ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 ) ‘  0  )  =  ( 𝑥  +   0  ) ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 ) ‘  0  )  =  ( 𝑥  +   0  ) ) | 
						
							| 13 | 1 2 3 | grprid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥  +   0  )  =  𝑥 ) | 
						
							| 14 | 12 13 | eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 ) ‘  0  )  =  𝑥 ) | 
						
							| 15 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 16 | 4 | symgid | ⊢ ( 𝑋  ∈  V  →  (  I   ↾  𝑋 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ (  I   ↾  𝑋 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 18 | 17 | fveq1i | ⊢ ( (  I   ↾  𝑋 ) ‘  0  )  =  ( ( 0g ‘ 𝐻 ) ‘  0  ) | 
						
							| 19 |  | fvresi | ⊢ (  0   ∈  𝑋  →  ( (  I   ↾  𝑋 ) ‘  0  )  =   0  ) | 
						
							| 20 | 10 19 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋 )  →  ( (  I   ↾  𝑋 ) ‘  0  )  =   0  ) | 
						
							| 21 | 18 20 | eqtr3id | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋 )  →  ( ( 0g ‘ 𝐻 ) ‘  0  )  =   0  ) | 
						
							| 22 | 14 21 | eqeq12d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝐹 ‘ 𝑥 ) ‘  0  )  =  ( ( 0g ‘ 𝐻 ) ‘  0  )  ↔  𝑥  =   0  ) ) | 
						
							| 23 | 7 22 | imbitrid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 0g ‘ 𝐻 )  →  𝑥  =   0  ) ) | 
						
							| 24 | 23 | ralrimiva | ⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  =  ( 0g ‘ 𝐻 )  →  𝑥  =   0  ) ) | 
						
							| 25 | 1 2 3 4 5 6 | cayleylem1 | ⊢ ( 𝐺  ∈  Grp  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 26 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 27 | 1 5 3 26 | ghmf1 | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  ( 𝐹 : 𝑋 –1-1→ 𝑆  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  =  ( 0g ‘ 𝐻 )  →  𝑥  =   0  ) ) ) | 
						
							| 28 | 25 27 | syl | ⊢ ( 𝐺  ∈  Grp  →  ( 𝐹 : 𝑋 –1-1→ 𝑆  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  =  ( 0g ‘ 𝐻 )  →  𝑥  =   0  ) ) ) | 
						
							| 29 | 24 28 | mpbird | ⊢ ( 𝐺  ∈  Grp  →  𝐹 : 𝑋 –1-1→ 𝑆 ) |