Metamath Proof Explorer


Theorem cayleylem2

Description: Lemma for cayley . (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cayleylem1.x 𝑋 = ( Base ‘ 𝐺 )
cayleylem1.p + = ( +g𝐺 )
cayleylem1.u 0 = ( 0g𝐺 )
cayleylem1.h 𝐻 = ( SymGrp ‘ 𝑋 )
cayleylem1.s 𝑆 = ( Base ‘ 𝐻 )
cayleylem1.f 𝐹 = ( 𝑔𝑋 ↦ ( 𝑎𝑋 ↦ ( 𝑔 + 𝑎 ) ) )
Assertion cayleylem2 ( 𝐺 ∈ Grp → 𝐹 : 𝑋1-1𝑆 )

Proof

Step Hyp Ref Expression
1 cayleylem1.x 𝑋 = ( Base ‘ 𝐺 )
2 cayleylem1.p + = ( +g𝐺 )
3 cayleylem1.u 0 = ( 0g𝐺 )
4 cayleylem1.h 𝐻 = ( SymGrp ‘ 𝑋 )
5 cayleylem1.s 𝑆 = ( Base ‘ 𝐻 )
6 cayleylem1.f 𝐹 = ( 𝑔𝑋 ↦ ( 𝑎𝑋 ↦ ( 𝑔 + 𝑎 ) ) )
7 fveq1 ( ( 𝐹𝑥 ) = ( 0g𝐻 ) → ( ( 𝐹𝑥 ) ‘ 0 ) = ( ( 0g𝐻 ) ‘ 0 ) )
8 simpr ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → 𝑥𝑋 )
9 1 3 grpidcl ( 𝐺 ∈ Grp → 0𝑋 )
10 9 adantr ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → 0𝑋 )
11 6 1 grplactval ( ( 𝑥𝑋0𝑋 ) → ( ( 𝐹𝑥 ) ‘ 0 ) = ( 𝑥 + 0 ) )
12 8 10 11 syl2anc ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( ( 𝐹𝑥 ) ‘ 0 ) = ( 𝑥 + 0 ) )
13 1 2 3 grprid ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( 𝑥 + 0 ) = 𝑥 )
14 12 13 eqtrd ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( ( 𝐹𝑥 ) ‘ 0 ) = 𝑥 )
15 1 fvexi 𝑋 ∈ V
16 4 symgid ( 𝑋 ∈ V → ( I ↾ 𝑋 ) = ( 0g𝐻 ) )
17 15 16 ax-mp ( I ↾ 𝑋 ) = ( 0g𝐻 )
18 17 fveq1i ( ( I ↾ 𝑋 ) ‘ 0 ) = ( ( 0g𝐻 ) ‘ 0 )
19 fvresi ( 0𝑋 → ( ( I ↾ 𝑋 ) ‘ 0 ) = 0 )
20 10 19 syl ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( ( I ↾ 𝑋 ) ‘ 0 ) = 0 )
21 18 20 eqtr3id ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( ( 0g𝐻 ) ‘ 0 ) = 0 )
22 14 21 eqeq12d ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( ( ( 𝐹𝑥 ) ‘ 0 ) = ( ( 0g𝐻 ) ‘ 0 ) ↔ 𝑥 = 0 ) )
23 7 22 syl5ib ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( ( 𝐹𝑥 ) = ( 0g𝐻 ) → 𝑥 = 0 ) )
24 23 ralrimiva ( 𝐺 ∈ Grp → ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = ( 0g𝐻 ) → 𝑥 = 0 ) )
25 1 2 3 4 5 6 cayleylem1 ( 𝐺 ∈ Grp → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
26 eqid ( 0g𝐻 ) = ( 0g𝐻 )
27 1 5 3 26 ghmf1 ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐹 : 𝑋1-1𝑆 ↔ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = ( 0g𝐻 ) → 𝑥 = 0 ) ) )
28 25 27 syl ( 𝐺 ∈ Grp → ( 𝐹 : 𝑋1-1𝑆 ↔ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = ( 0g𝐻 ) → 𝑥 = 0 ) ) )
29 24 28 mpbird ( 𝐺 ∈ Grp → 𝐹 : 𝑋1-1𝑆 )