Step |
Hyp |
Ref |
Expression |
1 |
|
cayleylem1.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
cayleylem1.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
cayleylem1.u |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
cayleylem1.h |
⊢ 𝐻 = ( SymGrp ‘ 𝑋 ) |
5 |
|
cayleylem1.s |
⊢ 𝑆 = ( Base ‘ 𝐻 ) |
6 |
|
cayleylem1.f |
⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) |
7 |
|
fveq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝐻 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 0 ) = ( ( 0g ‘ 𝐻 ) ‘ 0 ) ) |
8 |
|
simpr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
9 |
1 3
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ 𝑋 ) |
11 |
6 1
|
grplactval |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 0 ) = ( 𝑥 + 0 ) ) |
12 |
8 10 11
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 0 ) = ( 𝑥 + 0 ) ) |
13 |
1 2 3
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 + 0 ) = 𝑥 ) |
14 |
12 13
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 0 ) = 𝑥 ) |
15 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
16 |
4
|
symgid |
⊢ ( 𝑋 ∈ V → ( I ↾ 𝑋 ) = ( 0g ‘ 𝐻 ) ) |
17 |
15 16
|
ax-mp |
⊢ ( I ↾ 𝑋 ) = ( 0g ‘ 𝐻 ) |
18 |
17
|
fveq1i |
⊢ ( ( I ↾ 𝑋 ) ‘ 0 ) = ( ( 0g ‘ 𝐻 ) ‘ 0 ) |
19 |
|
fvresi |
⊢ ( 0 ∈ 𝑋 → ( ( I ↾ 𝑋 ) ‘ 0 ) = 0 ) |
20 |
10 19
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( I ↾ 𝑋 ) ‘ 0 ) = 0 ) |
21 |
18 20
|
eqtr3id |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( 0g ‘ 𝐻 ) ‘ 0 ) = 0 ) |
22 |
14 21
|
eqeq12d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 0 ) = ( ( 0g ‘ 𝐻 ) ‘ 0 ) ↔ 𝑥 = 0 ) ) |
23 |
7 22
|
syl5ib |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝐻 ) → 𝑥 = 0 ) ) |
24 |
23
|
ralrimiva |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝐻 ) → 𝑥 = 0 ) ) |
25 |
1 2 3 4 5 6
|
cayleylem1 |
⊢ ( 𝐺 ∈ Grp → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
27 |
1 5 3 26
|
ghmf1 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐹 : 𝑋 –1-1→ 𝑆 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝐻 ) → 𝑥 = 0 ) ) ) |
28 |
25 27
|
syl |
⊢ ( 𝐺 ∈ Grp → ( 𝐹 : 𝑋 –1-1→ 𝑆 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝐻 ) → 𝑥 = 0 ) ) ) |
29 |
24 28
|
mpbird |
⊢ ( 𝐺 ∈ Grp → 𝐹 : 𝑋 –1-1→ 𝑆 ) |