| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayleylem1.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
cayleylem1.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
cayleylem1.u |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 4 |
|
cayleylem1.h |
⊢ 𝐻 = ( SymGrp ‘ 𝑋 ) |
| 5 |
|
cayleylem1.s |
⊢ 𝑆 = ( Base ‘ 𝐻 ) |
| 6 |
|
cayleylem1.f |
⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) |
| 7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 + 𝑦 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 + 𝑦 ) ) |
| 8 |
1 2 7
|
gaid2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 + 𝑦 ) ) ∈ ( 𝐺 GrpAct 𝑋 ) ) |
| 9 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑔 ∧ 𝑦 = 𝑎 ) → ( 𝑥 + 𝑦 ) = ( 𝑔 + 𝑎 ) ) |
| 10 |
|
ovex |
⊢ ( 𝑔 + 𝑎 ) ∈ V |
| 11 |
9 7 10
|
ovmpoa |
⊢ ( ( 𝑔 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → ( 𝑔 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 + 𝑦 ) ) 𝑎 ) = ( 𝑔 + 𝑎 ) ) |
| 12 |
11
|
mpteq2dva |
⊢ ( 𝑔 ∈ 𝑋 → ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 + 𝑦 ) ) 𝑎 ) ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) |
| 13 |
12
|
mpteq2ia |
⊢ ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 + 𝑦 ) ) 𝑎 ) ) ) = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) |
| 14 |
6 13
|
eqtr4i |
⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 + 𝑦 ) ) 𝑎 ) ) ) |
| 15 |
1 4 14
|
galactghm |
⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 + 𝑦 ) ) ∈ ( 𝐺 GrpAct 𝑋 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 16 |
8 15
|
syl |
⊢ ( 𝐺 ∈ Grp → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |