Metamath Proof Explorer


Theorem cayleylem1

Description: Lemma for cayley . (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cayleylem1.x X = Base G
cayleylem1.p + ˙ = + G
cayleylem1.u 0 ˙ = 0 G
cayleylem1.h H = SymGrp X
cayleylem1.s S = Base H
cayleylem1.f F = g X a X g + ˙ a
Assertion cayleylem1 G Grp F G GrpHom H

Proof

Step Hyp Ref Expression
1 cayleylem1.x X = Base G
2 cayleylem1.p + ˙ = + G
3 cayleylem1.u 0 ˙ = 0 G
4 cayleylem1.h H = SymGrp X
5 cayleylem1.s S = Base H
6 cayleylem1.f F = g X a X g + ˙ a
7 eqid x X , y X x + ˙ y = x X , y X x + ˙ y
8 1 2 7 gaid2 G Grp x X , y X x + ˙ y G GrpAct X
9 oveq12 x = g y = a x + ˙ y = g + ˙ a
10 ovex g + ˙ a V
11 9 7 10 ovmpoa g X a X g x X , y X x + ˙ y a = g + ˙ a
12 11 mpteq2dva g X a X g x X , y X x + ˙ y a = a X g + ˙ a
13 12 mpteq2ia g X a X g x X , y X x + ˙ y a = g X a X g + ˙ a
14 6 13 eqtr4i F = g X a X g x X , y X x + ˙ y a
15 1 4 14 galactghm x X , y X x + ˙ y G GrpAct X F G GrpHom H
16 8 15 syl G Grp F G GrpHom H