Metamath Proof Explorer


Theorem cayleylem1

Description: Lemma for cayley . (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cayleylem1.x X=BaseG
cayleylem1.p +˙=+G
cayleylem1.u 0˙=0G
cayleylem1.h H=SymGrpX
cayleylem1.s S=BaseH
cayleylem1.f F=gXaXg+˙a
Assertion cayleylem1 GGrpFGGrpHomH

Proof

Step Hyp Ref Expression
1 cayleylem1.x X=BaseG
2 cayleylem1.p +˙=+G
3 cayleylem1.u 0˙=0G
4 cayleylem1.h H=SymGrpX
5 cayleylem1.s S=BaseH
6 cayleylem1.f F=gXaXg+˙a
7 eqid xX,yXx+˙y=xX,yXx+˙y
8 1 2 7 gaid2 GGrpxX,yXx+˙yGGrpActX
9 oveq12 x=gy=ax+˙y=g+˙a
10 ovex g+˙aV
11 9 7 10 ovmpoa gXaXgxX,yXx+˙ya=g+˙a
12 11 mpteq2dva gXaXgxX,yXx+˙ya=aXg+˙a
13 12 mpteq2ia gXaXgxX,yXx+˙ya=gXaXg+˙a
14 6 13 eqtr4i F=gXaXgxX,yXx+˙ya
15 1 4 14 galactghm xX,yXx+˙yGGrpActXFGGrpHomH
16 8 15 syl GGrpFGGrpHomH