| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayley.x |
|- X = ( Base ` G ) |
| 2 |
|
cayley.h |
|- H = ( SymGrp ` X ) |
| 3 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 4 |
|
eqid |
|- ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) = ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) |
| 5 |
|
eqid |
|- ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) = ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) |
| 6 |
1 2 3 4 5
|
cayley |
|- ( G e. Grp -> ( ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( SubGrp ` H ) /\ ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) /\ ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) |
| 7 |
6
|
simp1d |
|- ( G e. Grp -> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( SubGrp ` H ) ) |
| 8 |
6
|
simp2d |
|- ( G e. Grp -> ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) ) |
| 9 |
6
|
simp3d |
|- ( G e. Grp -> ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) |
| 10 |
|
f1oeq1 |
|- ( f = ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) -> ( f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) <-> ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) |
| 11 |
10
|
rspcev |
|- ( ( ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) /\ ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) -> E. f e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) |
| 12 |
8 9 11
|
syl2anc |
|- ( G e. Grp -> E. f e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) |
| 13 |
|
oveq2 |
|- ( s = ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) -> ( H |`s s ) = ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) |
| 14 |
13
|
oveq2d |
|- ( s = ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) -> ( G GrpHom ( H |`s s ) ) = ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) ) |
| 15 |
|
f1oeq3 |
|- ( s = ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) -> ( f : X -1-1-onto-> s <-> f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) |
| 16 |
14 15
|
rexeqbidv |
|- ( s = ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) -> ( E. f e. ( G GrpHom ( H |`s s ) ) f : X -1-1-onto-> s <-> E. f e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) |
| 17 |
16
|
rspcev |
|- ( ( ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( SubGrp ` H ) /\ E. f e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) -> E. s e. ( SubGrp ` H ) E. f e. ( G GrpHom ( H |`s s ) ) f : X -1-1-onto-> s ) |
| 18 |
7 12 17
|
syl2anc |
|- ( G e. Grp -> E. s e. ( SubGrp ` H ) E. f e. ( G GrpHom ( H |`s s ) ) f : X -1-1-onto-> s ) |