| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayley.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | cayley.h |  |-  H = ( SymGrp ` X ) | 
						
							| 3 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 4 |  | eqid |  |-  ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) = ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) | 
						
							| 5 |  | eqid |  |-  ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) = ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) | 
						
							| 6 | 1 2 3 4 5 | cayley |  |-  ( G e. Grp -> ( ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( SubGrp ` H ) /\ ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) /\ ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) | 
						
							| 7 | 6 | simp1d |  |-  ( G e. Grp -> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( SubGrp ` H ) ) | 
						
							| 8 | 6 | simp2d |  |-  ( G e. Grp -> ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) ) | 
						
							| 9 | 6 | simp3d |  |-  ( G e. Grp -> ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) | 
						
							| 10 |  | f1oeq1 |  |-  ( f = ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) -> ( f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) <-> ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) | 
						
							| 11 | 10 | rspcev |  |-  ( ( ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) /\ ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) -> E. f e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) | 
						
							| 12 | 8 9 11 | syl2anc |  |-  ( G e. Grp -> E. f e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( s = ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) -> ( H |`s s ) = ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) | 
						
							| 14 | 13 | oveq2d |  |-  ( s = ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) -> ( G GrpHom ( H |`s s ) ) = ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) ) | 
						
							| 15 |  | f1oeq3 |  |-  ( s = ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) -> ( f : X -1-1-onto-> s <-> f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) | 
						
							| 16 | 14 15 | rexeqbidv |  |-  ( s = ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) -> ( E. f e. ( G GrpHom ( H |`s s ) ) f : X -1-1-onto-> s <-> E. f e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) | 
						
							| 17 | 16 | rspcev |  |-  ( ( ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) e. ( SubGrp ` H ) /\ E. f e. ( G GrpHom ( H |`s ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) ) f : X -1-1-onto-> ran ( g e. X |-> ( a e. X |-> ( g ( +g ` G ) a ) ) ) ) -> E. s e. ( SubGrp ` H ) E. f e. ( G GrpHom ( H |`s s ) ) f : X -1-1-onto-> s ) | 
						
							| 18 | 7 12 17 | syl2anc |  |-  ( G e. Grp -> E. s e. ( SubGrp ` H ) E. f e. ( G GrpHom ( H |`s s ) ) f : X -1-1-onto-> s ) |