Metamath Proof Explorer


Theorem cayleyth

Description: Cayley's Theorem (existence version): every group G is isomorphic to a subgroup of the symmetric group on the underlying set of G . (For any group G there exists an isomorphism f between G and a subgroup h of the symmetric group on the underlying set of G .) See also Theorem 3.15 in Rotman p. 42. (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cayley.x X=BaseG
cayley.h H=SymGrpX
Assertion cayleyth GGrpsSubGrpHfGGrpHomH𝑠sf:X1-1 ontos

Proof

Step Hyp Ref Expression
1 cayley.x X=BaseG
2 cayley.h H=SymGrpX
3 eqid +G=+G
4 eqid gXaXg+Ga=gXaXg+Ga
5 eqid rangXaXg+Ga=rangXaXg+Ga
6 1 2 3 4 5 cayley GGrprangXaXg+GaSubGrpHgXaXg+GaGGrpHomH𝑠rangXaXg+GagXaXg+Ga:X1-1 ontorangXaXg+Ga
7 6 simp1d GGrprangXaXg+GaSubGrpH
8 6 simp2d GGrpgXaXg+GaGGrpHomH𝑠rangXaXg+Ga
9 6 simp3d GGrpgXaXg+Ga:X1-1 ontorangXaXg+Ga
10 f1oeq1 f=gXaXg+Gaf:X1-1 ontorangXaXg+GagXaXg+Ga:X1-1 ontorangXaXg+Ga
11 10 rspcev gXaXg+GaGGrpHomH𝑠rangXaXg+GagXaXg+Ga:X1-1 ontorangXaXg+GafGGrpHomH𝑠rangXaXg+Gaf:X1-1 ontorangXaXg+Ga
12 8 9 11 syl2anc GGrpfGGrpHomH𝑠rangXaXg+Gaf:X1-1 ontorangXaXg+Ga
13 oveq2 s=rangXaXg+GaH𝑠s=H𝑠rangXaXg+Ga
14 13 oveq2d s=rangXaXg+GaGGrpHomH𝑠s=GGrpHomH𝑠rangXaXg+Ga
15 f1oeq3 s=rangXaXg+Gaf:X1-1 ontosf:X1-1 ontorangXaXg+Ga
16 14 15 rexeqbidv s=rangXaXg+GafGGrpHomH𝑠sf:X1-1 ontosfGGrpHomH𝑠rangXaXg+Gaf:X1-1 ontorangXaXg+Ga
17 16 rspcev rangXaXg+GaSubGrpHfGGrpHomH𝑠rangXaXg+Gaf:X1-1 ontorangXaXg+GasSubGrpHfGGrpHomH𝑠sf:X1-1 ontos
18 7 12 17 syl2anc GGrpsSubGrpHfGGrpHomH𝑠sf:X1-1 ontos