Metamath Proof Explorer


Theorem cbvixpdavw2

Description: Change bound variable and domain in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvixpdavw2.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
cbvixpdavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
Assertion cbvixpdavw2 ( 𝜑X 𝑥𝐴 𝐶 = X 𝑦𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 cbvixpdavw2.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
2 cbvixpdavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
3 simpr ( ( 𝜑𝑥 = 𝑦 ) → 𝑥 = 𝑦 )
4 3 2 eleq12d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥𝐴𝑦𝐵 ) )
5 4 cbvabdavw ( 𝜑 → { 𝑥𝑥𝐴 } = { 𝑦𝑦𝐵 } )
6 5 fneq2d ( 𝜑 → ( 𝑡 Fn { 𝑥𝑥𝐴 } ↔ 𝑡 Fn { 𝑦𝑦𝐵 } ) )
7 fveq2 ( 𝑥 = 𝑦 → ( 𝑡𝑥 ) = ( 𝑡𝑦 ) )
8 7 adantl ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑡𝑥 ) = ( 𝑡𝑦 ) )
9 8 1 eleq12d ( ( 𝜑𝑥 = 𝑦 ) → ( ( 𝑡𝑥 ) ∈ 𝐶 ↔ ( 𝑡𝑦 ) ∈ 𝐷 ) )
10 9 2 cbvraldva2 ( 𝜑 → ( ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ↔ ∀ 𝑦𝐵 ( 𝑡𝑦 ) ∈ 𝐷 ) )
11 6 10 anbi12d ( 𝜑 → ( ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ) ↔ ( 𝑡 Fn { 𝑦𝑦𝐵 } ∧ ∀ 𝑦𝐵 ( 𝑡𝑦 ) ∈ 𝐷 ) ) )
12 11 abbidv ( 𝜑 → { 𝑡 ∣ ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ) } = { 𝑡 ∣ ( 𝑡 Fn { 𝑦𝑦𝐵 } ∧ ∀ 𝑦𝐵 ( 𝑡𝑦 ) ∈ 𝐷 ) } )
13 df-ixp X 𝑥𝐴 𝐶 = { 𝑡 ∣ ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ) }
14 df-ixp X 𝑦𝐵 𝐷 = { 𝑡 ∣ ( 𝑡 Fn { 𝑦𝑦𝐵 } ∧ ∀ 𝑦𝐵 ( 𝑡𝑦 ) ∈ 𝐷 ) }
15 12 13 14 3eqtr4g ( 𝜑X 𝑥𝐴 𝐶 = X 𝑦𝐵 𝐷 )