Metamath Proof Explorer


Theorem cbvixpdavw2

Description: Change bound variable and domain in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvixpdavw2.1
|- ( ( ph /\ x = y ) -> C = D )
cbvixpdavw2.2
|- ( ( ph /\ x = y ) -> A = B )
Assertion cbvixpdavw2
|- ( ph -> X_ x e. A C = X_ y e. B D )

Proof

Step Hyp Ref Expression
1 cbvixpdavw2.1
 |-  ( ( ph /\ x = y ) -> C = D )
2 cbvixpdavw2.2
 |-  ( ( ph /\ x = y ) -> A = B )
3 simpr
 |-  ( ( ph /\ x = y ) -> x = y )
4 3 2 eleq12d
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. B ) )
5 4 cbvabdavw
 |-  ( ph -> { x | x e. A } = { y | y e. B } )
6 5 fneq2d
 |-  ( ph -> ( t Fn { x | x e. A } <-> t Fn { y | y e. B } ) )
7 fveq2
 |-  ( x = y -> ( t ` x ) = ( t ` y ) )
8 7 adantl
 |-  ( ( ph /\ x = y ) -> ( t ` x ) = ( t ` y ) )
9 8 1 eleq12d
 |-  ( ( ph /\ x = y ) -> ( ( t ` x ) e. C <-> ( t ` y ) e. D ) )
10 9 2 cbvraldva2
 |-  ( ph -> ( A. x e. A ( t ` x ) e. C <-> A. y e. B ( t ` y ) e. D ) )
11 6 10 anbi12d
 |-  ( ph -> ( ( t Fn { x | x e. A } /\ A. x e. A ( t ` x ) e. C ) <-> ( t Fn { y | y e. B } /\ A. y e. B ( t ` y ) e. D ) ) )
12 11 abbidv
 |-  ( ph -> { t | ( t Fn { x | x e. A } /\ A. x e. A ( t ` x ) e. C ) } = { t | ( t Fn { y | y e. B } /\ A. y e. B ( t ` y ) e. D ) } )
13 df-ixp
 |-  X_ x e. A C = { t | ( t Fn { x | x e. A } /\ A. x e. A ( t ` x ) e. C ) }
14 df-ixp
 |-  X_ y e. B D = { t | ( t Fn { y | y e. B } /\ A. y e. B ( t ` y ) e. D ) }
15 12 13 14 3eqtr4g
 |-  ( ph -> X_ x e. A C = X_ y e. B D )