Metamath Proof Explorer


Theorem cbvoprab13vw

Description: Change the first and third bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab13vw.1 ( ( 𝑥 = 𝑤𝑧 = 𝑣 ) → ( 𝜓𝜒 ) )
Assertion cbvoprab13vw { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑣 ⟩ ∣ 𝜒 }

Proof

Step Hyp Ref Expression
1 cbvoprab13vw.1 ( ( 𝑥 = 𝑤𝑧 = 𝑣 ) → ( 𝜓𝜒 ) )
2 opeq1 ( 𝑥 = 𝑤 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑤 , 𝑦 ⟩ )
3 2 adantr ( ( 𝑥 = 𝑤𝑧 = 𝑣 ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑤 , 𝑦 ⟩ )
4 simpr ( ( 𝑥 = 𝑤𝑧 = 𝑣 ) → 𝑧 = 𝑣 )
5 3 4 opeq12d ( ( 𝑥 = 𝑤𝑧 = 𝑣 ) → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑣 ⟩ )
6 5 eqeq2d ( ( 𝑥 = 𝑤𝑧 = 𝑣 ) → ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ↔ 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑣 ⟩ ) )
7 6 1 anbi12d ( ( 𝑥 = 𝑤𝑧 = 𝑣 ) → ( ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
8 7 cbvexdvaw ( 𝑥 = 𝑤 → ( ∃ 𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
9 8 exbidv ( 𝑥 = 𝑤 → ( ∃ 𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑦𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
10 9 cbvexvw ( ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑤𝑦𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) )
11 10 abbii { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) } = { 𝑡 ∣ ∃ 𝑤𝑦𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) }
12 df-oprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) }
13 df-oprab { ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑣 ⟩ ∣ 𝜒 } = { 𝑡 ∣ ∃ 𝑤𝑦𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) }
14 11 12 13 3eqtr4i { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑣 ⟩ ∣ 𝜒 }