| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvrabw.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | cbvrabw.2 | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 3 |  | cbvrabw.3 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 4 |  | cbvrabw.4 | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 5 |  | cbvrabw.5 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑥  ∈  𝐴  ∧  𝜑 ) | 
						
							| 7 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑧  ∈  𝐴 | 
						
							| 8 |  | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 10 |  | eleq1w | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 11 |  | sbequ12 | ⊢ ( 𝑥  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 12 | 10 11 | anbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 13 | 6 9 12 | cbvabw | ⊢ { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  =  { 𝑧  ∣  ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) } | 
						
							| 14 | 2 | nfcri | ⊢ Ⅎ 𝑦 𝑧  ∈  𝐴 | 
						
							| 15 | 3 | nfsbv | ⊢ Ⅎ 𝑦 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 16 | 14 15 | nfan | ⊢ Ⅎ 𝑦 ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑦  ∈  𝐴  ∧  𝜓 ) | 
						
							| 18 |  | eleq1w | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 19 |  | sbequ | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 20 | 4 5 | sbiev | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜓 ) | 
						
							| 21 | 19 20 | bitrdi | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝜓 ) ) | 
						
							| 22 | 18 21 | anbi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 23 | 16 17 22 | cbvabw | ⊢ { 𝑧  ∣  ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  𝜓 ) } | 
						
							| 24 | 13 23 | eqtri | ⊢ { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  𝜓 ) } | 
						
							| 25 |  | df-rab | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) } | 
						
							| 26 |  | df-rab | ⊢ { 𝑦  ∈  𝐴  ∣  𝜓 }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  𝜓 ) } | 
						
							| 27 | 24 25 26 | 3eqtr4i | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑦  ∈  𝐴  ∣  𝜓 } |