Step |
Hyp |
Ref |
Expression |
1 |
|
ccatw2s1ccatws2 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) = ( 𝑊 ++ 〈“ 𝑋 𝑌 ”〉 ) ) |
2 |
1
|
fveq1d |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝐼 ) = ( ( 𝑊 ++ 〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 ) ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝐼 ) = ( ( 𝑊 ++ 〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 ) ) |
4 |
|
simp1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝑉 ) |
5 |
|
s2cli |
⊢ 〈“ 𝑋 𝑌 ”〉 ∈ Word V |
6 |
5
|
a1i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 〈“ 𝑋 𝑌 ”〉 ∈ Word V ) |
7 |
|
simp2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℕ0 ) |
8 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
9 |
8
|
nn0zd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
11 |
|
simp3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝐼 < ( ♯ ‘ 𝑊 ) ) |
12 |
|
elfzo0z |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) ) |
13 |
7 10 11 12
|
syl3anbrc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
14 |
|
ccatval1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 〈“ 𝑋 𝑌 ”〉 ∈ Word V ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 ++ 〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |
15 |
4 6 13 14
|
syl3anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ 〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |
16 |
3 15
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |