| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemd4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdlemd4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdlemd4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
cdlemd4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 5 |
|
cdlemd4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑅 = 𝑃 → ( 𝐹 ‘ 𝑅 ) = ( 𝐹 ‘ 𝑃 ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑅 = 𝑃 → ( 𝐺 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑃 ) ) |
| 8 |
6 7
|
eqeq12d |
⊢ ( 𝑅 = 𝑃 → ( ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ↔ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) ) |
| 9 |
|
simpll1 |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ) |
| 10 |
|
simpl21 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 12 |
|
simpl22 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 14 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → 𝑃 ≠ 𝑄 ) |
| 16 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 17 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → 𝑅 ≠ 𝑃 ) |
| 18 |
15 16 17
|
3jca |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) |
| 19 |
|
simpll3 |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) |
| 20 |
1 2 3 4 5
|
cdlemd4 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
| 21 |
9 11 13 18 19 20
|
syl131anc |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
| 22 |
|
simpl3l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
| 23 |
8 21 22
|
pm2.61ne |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
| 24 |
|
simpl1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ) |
| 25 |
|
simpl21 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 26 |
|
simpl22 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 27 |
|
simpl23 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑃 ≠ 𝑄 ) |
| 28 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 29 |
27 28
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 30 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) |
| 31 |
1 2 3 4 5
|
cdlemd2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
| 32 |
24 25 26 29 30 31
|
syl131anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
| 33 |
23 32
|
pm2.61dan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |