Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemd4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemd4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemd4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
cdlemd4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
cdlemd4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
fveq2 |
⊢ ( 𝑅 = 𝑃 → ( 𝐹 ‘ 𝑅 ) = ( 𝐹 ‘ 𝑃 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑅 = 𝑃 → ( 𝐺 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑃 ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑅 = 𝑃 → ( ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ↔ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) ) |
9 |
|
simpll1 |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ) |
10 |
|
simpl21 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
11 |
10
|
adantr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
12 |
|
simpl22 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
14 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → 𝑃 ≠ 𝑄 ) |
16 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
17 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → 𝑅 ≠ 𝑃 ) |
18 |
15 16 17
|
3jca |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) |
19 |
|
simpll3 |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) |
20 |
1 2 3 4 5
|
cdlemd4 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
21 |
9 11 13 18 19 20
|
syl131anc |
⊢ ( ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≠ 𝑃 ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
22 |
|
simpl3l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
23 |
8 21 22
|
pm2.61ne |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
24 |
|
simpl1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ) |
25 |
|
simpl21 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
26 |
|
simpl22 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
27 |
|
simpl23 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑃 ≠ 𝑄 ) |
28 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
29 |
27 28
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
30 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) |
31 |
1 2 3 4 5
|
cdlemd2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
32 |
24 25 26 29 30 31
|
syl131anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
33 |
23 32
|
pm2.61dan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |