| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemd4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdlemd4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdlemd4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
cdlemd4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 5 |
|
cdlemd4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
| 7 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑊 ∈ 𝐻 ) |
| 8 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 9 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 10 |
|
simp231 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
| 11 |
1 2 3 4
|
cdlemb2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 12 |
6 7 8 9 10 11
|
syl221anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 13 |
|
simpl11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 14 |
|
simpl12 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) |
| 15 |
|
simpl13 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑅 ∈ 𝐴 ) |
| 16 |
|
simpl21 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 17 |
|
simprl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑠 ∈ 𝐴 ) |
| 18 |
|
simprrl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑠 ≤ 𝑊 ) |
| 19 |
17 18
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) |
| 20 |
6
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
| 21 |
20
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝐾 ∈ Lat ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 23 |
22 3
|
atbase |
⊢ ( 𝑠 ∈ 𝐴 → 𝑠 ∈ ( Base ‘ 𝐾 ) ) |
| 24 |
23
|
ad2antrl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑠 ∈ ( Base ‘ 𝐾 ) ) |
| 25 |
|
simp21l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
| 26 |
22 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 30 |
22 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 33 |
|
simprrr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 34 |
22 1 2
|
latnlej1l |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑠 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑠 ≠ 𝑃 ) |
| 35 |
34
|
necomd |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑠 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑃 ≠ 𝑠 ) |
| 36 |
21 24 28 32 33 35
|
syl131anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑃 ≠ 𝑠 ) |
| 37 |
|
simpl22 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 38 |
|
simpl23 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) |
| 39 |
1 2 3 4
|
cdlemd3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑠 ) ) |
| 40 |
13 16 37 38 15 17 33 39
|
syl133anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑠 ) ) |
| 41 |
36 40
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑃 ≠ 𝑠 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑠 ) ) ) |
| 42 |
|
simpl3l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
| 43 |
10
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
| 44 |
43 33
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 45 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) |
| 46 |
1 2 3 4 5
|
cdlemd2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑠 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 47 |
13 14 17 16 37 44 45 46
|
syl331anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝐹 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 48 |
1 2 3 4 5
|
cdlemd2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑠 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑠 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑠 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
| 49 |
13 14 15 16 19 41 42 47 48
|
syl332anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
| 50 |
12 49
|
rexlimddv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |