Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemd2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemd2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemd2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
cdlemd2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
cdlemd2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
7 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝐹 ∈ 𝑇 ) |
9 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
10 |
9
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
11 |
|
simp21l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
12 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑅 ∈ 𝐴 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
14 |
13 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
9 11 12 14
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑊 ∈ 𝐻 ) |
17 |
13 4
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
18 |
16 17
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
19 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
20 |
13 19
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
10 15 18 20
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
13 1 19
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑊 ) |
23 |
10 15 18 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑊 ) |
24 |
13 1 4 5
|
ltrnval1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑊 ) ) → ( 𝐹 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
25 |
7 8 21 23 24
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
26 |
|
simp12r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝐺 ∈ 𝑇 ) |
27 |
13 1 4 5
|
ltrnval1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑊 ) ) → ( 𝐺 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
28 |
7 26 21 23 27
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐺 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
29 |
25 28
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( 𝐺 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
30 |
6 29
|
oveq12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
31 |
13 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
32 |
11 31
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
33 |
13 2 4 5
|
ltrnj |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
34 |
7 8 32 21 33
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
35 |
13 2 4 5
|
ltrnj |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐺 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
36 |
7 26 32 21 35
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐺 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
37 |
30 34 36
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( 𝐺 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
38 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) |
39 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
40 |
13 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
41 |
9 39 12 40
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
42 |
13 19
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
43 |
10 41 18 42
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
44 |
13 1 19
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑊 ) |
45 |
10 41 18 44
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑊 ) |
46 |
13 1 4 5
|
ltrnval1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑊 ) ) → ( 𝐹 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
47 |
7 8 43 45 46
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
48 |
13 1 4 5
|
ltrnval1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑊 ) ) → ( 𝐺 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
49 |
7 26 43 45 48
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐺 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
50 |
47 49
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( 𝐺 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
51 |
38 50
|
oveq12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐺 ‘ 𝑄 ) ∨ ( 𝐺 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
52 |
13 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
53 |
39 52
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
54 |
13 2 4 5
|
ltrnj |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
55 |
7 8 53 43 54
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
56 |
13 2 4 5
|
ltrnj |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐺 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐺 ‘ 𝑄 ) ∨ ( 𝐺 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
57 |
7 26 53 43 56
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐺 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐺 ‘ 𝑄 ) ∨ ( 𝐺 ‘ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
58 |
51 55 57
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( 𝐺 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
59 |
37 58
|
oveq12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( meet ‘ 𝐾 ) ( 𝐹 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) = ( ( 𝐺 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( meet ‘ 𝐾 ) ( 𝐺 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
60 |
13 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
61 |
10 32 21 60
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
62 |
13 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
63 |
10 53 43 62
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
64 |
13 19 4 5
|
ltrnm |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( meet ‘ 𝐾 ) ( 𝐹 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
65 |
7 8 61 63 64
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( meet ‘ 𝐾 ) ( 𝐹 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
66 |
13 19 4 5
|
ltrnm |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐺 ‘ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) = ( ( 𝐺 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( meet ‘ 𝐾 ) ( 𝐺 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
67 |
7 26 61 63 66
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐺 ‘ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) = ( ( 𝐺 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( meet ‘ 𝐾 ) ( 𝐺 ‘ ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
68 |
59 65 67
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) = ( 𝐺 ‘ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
69 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
70 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
71 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
72 |
|
simp23r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
73 |
12 71 72
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
74 |
1 2 19 3 4
|
cdlemd1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑅 = ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
75 |
7 69 70 73 74
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → 𝑅 = ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
76 |
75
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐹 ‘ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
77 |
75
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐺 ‘ 𝑅 ) = ( 𝐺 ‘ ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑅 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
78 |
68 76 77
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |