Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemd2.l |
|
2 |
|
cdlemd2.j |
|
3 |
|
cdlemd2.a |
|
4 |
|
cdlemd2.h |
|
5 |
|
cdlemd2.t |
|
6 |
|
simp3l |
|
7 |
|
simp11 |
|
8 |
|
simp12l |
|
9 |
|
simp11l |
|
10 |
9
|
hllatd |
|
11 |
|
simp21l |
|
12 |
|
simp13 |
|
13 |
|
eqid |
|
14 |
13 2 3
|
hlatjcl |
|
15 |
9 11 12 14
|
syl3anc |
|
16 |
|
simp11r |
|
17 |
13 4
|
lhpbase |
|
18 |
16 17
|
syl |
|
19 |
|
eqid |
|
20 |
13 19
|
latmcl |
|
21 |
10 15 18 20
|
syl3anc |
|
22 |
13 1 19
|
latmle2 |
|
23 |
10 15 18 22
|
syl3anc |
|
24 |
13 1 4 5
|
ltrnval1 |
|
25 |
7 8 21 23 24
|
syl112anc |
|
26 |
|
simp12r |
|
27 |
13 1 4 5
|
ltrnval1 |
|
28 |
7 26 21 23 27
|
syl112anc |
|
29 |
25 28
|
eqtr4d |
|
30 |
6 29
|
oveq12d |
|
31 |
13 3
|
atbase |
|
32 |
11 31
|
syl |
|
33 |
13 2 4 5
|
ltrnj |
|
34 |
7 8 32 21 33
|
syl112anc |
|
35 |
13 2 4 5
|
ltrnj |
|
36 |
7 26 32 21 35
|
syl112anc |
|
37 |
30 34 36
|
3eqtr4d |
|
38 |
|
simp3r |
|
39 |
|
simp22l |
|
40 |
13 2 3
|
hlatjcl |
|
41 |
9 39 12 40
|
syl3anc |
|
42 |
13 19
|
latmcl |
|
43 |
10 41 18 42
|
syl3anc |
|
44 |
13 1 19
|
latmle2 |
|
45 |
10 41 18 44
|
syl3anc |
|
46 |
13 1 4 5
|
ltrnval1 |
|
47 |
7 8 43 45 46
|
syl112anc |
|
48 |
13 1 4 5
|
ltrnval1 |
|
49 |
7 26 43 45 48
|
syl112anc |
|
50 |
47 49
|
eqtr4d |
|
51 |
38 50
|
oveq12d |
|
52 |
13 3
|
atbase |
|
53 |
39 52
|
syl |
|
54 |
13 2 4 5
|
ltrnj |
|
55 |
7 8 53 43 54
|
syl112anc |
|
56 |
13 2 4 5
|
ltrnj |
|
57 |
7 26 53 43 56
|
syl112anc |
|
58 |
51 55 57
|
3eqtr4d |
|
59 |
37 58
|
oveq12d |
|
60 |
13 2
|
latjcl |
|
61 |
10 32 21 60
|
syl3anc |
|
62 |
13 2
|
latjcl |
|
63 |
10 53 43 62
|
syl3anc |
|
64 |
13 19 4 5
|
ltrnm |
|
65 |
7 8 61 63 64
|
syl112anc |
|
66 |
13 19 4 5
|
ltrnm |
|
67 |
7 26 61 63 66
|
syl112anc |
|
68 |
59 65 67
|
3eqtr4d |
|
69 |
|
simp21 |
|
70 |
|
simp22 |
|
71 |
|
simp23l |
|
72 |
|
simp23r |
|
73 |
12 71 72
|
3jca |
|
74 |
1 2 19 3 4
|
cdlemd1 |
|
75 |
7 69 70 73 74
|
syl13anc |
|
76 |
75
|
fveq2d |
|
77 |
75
|
fveq2d |
|
78 |
68 76 77
|
3eqtr4d |
|