Metamath Proof Explorer


Theorem cdlemd2

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 29-May-2012)

Ref Expression
Hypotheses cdlemd2.l ˙ = K
cdlemd2.j ˙ = join K
cdlemd2.a A = Atoms K
cdlemd2.h H = LHyp K
cdlemd2.t T = LTrn K W
Assertion cdlemd2 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F R = G R

Proof

Step Hyp Ref Expression
1 cdlemd2.l ˙ = K
2 cdlemd2.j ˙ = join K
3 cdlemd2.a A = Atoms K
4 cdlemd2.h H = LHyp K
5 cdlemd2.t T = LTrn K W
6 simp3l K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F P = G P
7 simp11 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q K HL W H
8 simp12l K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F T
9 simp11l K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q K HL
10 9 hllatd K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q K Lat
11 simp21l K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q P A
12 simp13 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q R A
13 eqid Base K = Base K
14 13 2 3 hlatjcl K HL P A R A P ˙ R Base K
15 9 11 12 14 syl3anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q P ˙ R Base K
16 simp11r K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q W H
17 13 4 lhpbase W H W Base K
18 16 17 syl K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q W Base K
19 eqid meet K = meet K
20 13 19 latmcl K Lat P ˙ R Base K W Base K P ˙ R meet K W Base K
21 10 15 18 20 syl3anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q P ˙ R meet K W Base K
22 13 1 19 latmle2 K Lat P ˙ R Base K W Base K P ˙ R meet K W ˙ W
23 10 15 18 22 syl3anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q P ˙ R meet K W ˙ W
24 13 1 4 5 ltrnval1 K HL W H F T P ˙ R meet K W Base K P ˙ R meet K W ˙ W F P ˙ R meet K W = P ˙ R meet K W
25 7 8 21 23 24 syl112anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F P ˙ R meet K W = P ˙ R meet K W
26 simp12r K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q G T
27 13 1 4 5 ltrnval1 K HL W H G T P ˙ R meet K W Base K P ˙ R meet K W ˙ W G P ˙ R meet K W = P ˙ R meet K W
28 7 26 21 23 27 syl112anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q G P ˙ R meet K W = P ˙ R meet K W
29 25 28 eqtr4d K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F P ˙ R meet K W = G P ˙ R meet K W
30 6 29 oveq12d K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F P ˙ F P ˙ R meet K W = G P ˙ G P ˙ R meet K W
31 13 3 atbase P A P Base K
32 11 31 syl K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q P Base K
33 13 2 4 5 ltrnj K HL W H F T P Base K P ˙ R meet K W Base K F P ˙ P ˙ R meet K W = F P ˙ F P ˙ R meet K W
34 7 8 32 21 33 syl112anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F P ˙ P ˙ R meet K W = F P ˙ F P ˙ R meet K W
35 13 2 4 5 ltrnj K HL W H G T P Base K P ˙ R meet K W Base K G P ˙ P ˙ R meet K W = G P ˙ G P ˙ R meet K W
36 7 26 32 21 35 syl112anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q G P ˙ P ˙ R meet K W = G P ˙ G P ˙ R meet K W
37 30 34 36 3eqtr4d K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F P ˙ P ˙ R meet K W = G P ˙ P ˙ R meet K W
38 simp3r K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F Q = G Q
39 simp22l K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q Q A
40 13 2 3 hlatjcl K HL Q A R A Q ˙ R Base K
41 9 39 12 40 syl3anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q Q ˙ R Base K
42 13 19 latmcl K Lat Q ˙ R Base K W Base K Q ˙ R meet K W Base K
43 10 41 18 42 syl3anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q Q ˙ R meet K W Base K
44 13 1 19 latmle2 K Lat Q ˙ R Base K W Base K Q ˙ R meet K W ˙ W
45 10 41 18 44 syl3anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q Q ˙ R meet K W ˙ W
46 13 1 4 5 ltrnval1 K HL W H F T Q ˙ R meet K W Base K Q ˙ R meet K W ˙ W F Q ˙ R meet K W = Q ˙ R meet K W
47 7 8 43 45 46 syl112anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F Q ˙ R meet K W = Q ˙ R meet K W
48 13 1 4 5 ltrnval1 K HL W H G T Q ˙ R meet K W Base K Q ˙ R meet K W ˙ W G Q ˙ R meet K W = Q ˙ R meet K W
49 7 26 43 45 48 syl112anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q G Q ˙ R meet K W = Q ˙ R meet K W
50 47 49 eqtr4d K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F Q ˙ R meet K W = G Q ˙ R meet K W
51 38 50 oveq12d K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F Q ˙ F Q ˙ R meet K W = G Q ˙ G Q ˙ R meet K W
52 13 3 atbase Q A Q Base K
53 39 52 syl K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q Q Base K
54 13 2 4 5 ltrnj K HL W H F T Q Base K Q ˙ R meet K W Base K F Q ˙ Q ˙ R meet K W = F Q ˙ F Q ˙ R meet K W
55 7 8 53 43 54 syl112anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F Q ˙ Q ˙ R meet K W = F Q ˙ F Q ˙ R meet K W
56 13 2 4 5 ltrnj K HL W H G T Q Base K Q ˙ R meet K W Base K G Q ˙ Q ˙ R meet K W = G Q ˙ G Q ˙ R meet K W
57 7 26 53 43 56 syl112anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q G Q ˙ Q ˙ R meet K W = G Q ˙ G Q ˙ R meet K W
58 51 55 57 3eqtr4d K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F Q ˙ Q ˙ R meet K W = G Q ˙ Q ˙ R meet K W
59 37 58 oveq12d K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F P ˙ P ˙ R meet K W meet K F Q ˙ Q ˙ R meet K W = G P ˙ P ˙ R meet K W meet K G Q ˙ Q ˙ R meet K W
60 13 2 latjcl K Lat P Base K P ˙ R meet K W Base K P ˙ P ˙ R meet K W Base K
61 10 32 21 60 syl3anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q P ˙ P ˙ R meet K W Base K
62 13 2 latjcl K Lat Q Base K Q ˙ R meet K W Base K Q ˙ Q ˙ R meet K W Base K
63 10 53 43 62 syl3anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q Q ˙ Q ˙ R meet K W Base K
64 13 19 4 5 ltrnm K HL W H F T P ˙ P ˙ R meet K W Base K Q ˙ Q ˙ R meet K W Base K F P ˙ P ˙ R meet K W meet K Q ˙ Q ˙ R meet K W = F P ˙ P ˙ R meet K W meet K F Q ˙ Q ˙ R meet K W
65 7 8 61 63 64 syl112anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F P ˙ P ˙ R meet K W meet K Q ˙ Q ˙ R meet K W = F P ˙ P ˙ R meet K W meet K F Q ˙ Q ˙ R meet K W
66 13 19 4 5 ltrnm K HL W H G T P ˙ P ˙ R meet K W Base K Q ˙ Q ˙ R meet K W Base K G P ˙ P ˙ R meet K W meet K Q ˙ Q ˙ R meet K W = G P ˙ P ˙ R meet K W meet K G Q ˙ Q ˙ R meet K W
67 7 26 61 63 66 syl112anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q G P ˙ P ˙ R meet K W meet K Q ˙ Q ˙ R meet K W = G P ˙ P ˙ R meet K W meet K G Q ˙ Q ˙ R meet K W
68 59 65 67 3eqtr4d K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F P ˙ P ˙ R meet K W meet K Q ˙ Q ˙ R meet K W = G P ˙ P ˙ R meet K W meet K Q ˙ Q ˙ R meet K W
69 simp21 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q P A ¬ P ˙ W
70 simp22 K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q Q A ¬ Q ˙ W
71 simp23l K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q P Q
72 simp23r K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q ¬ R ˙ P ˙ Q
73 12 71 72 3jca K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q R A P Q ¬ R ˙ P ˙ Q
74 1 2 19 3 4 cdlemd1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A P Q ¬ R ˙ P ˙ Q R = P ˙ P ˙ R meet K W meet K Q ˙ Q ˙ R meet K W
75 7 69 70 73 74 syl13anc K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q R = P ˙ P ˙ R meet K W meet K Q ˙ Q ˙ R meet K W
76 75 fveq2d K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F R = F P ˙ P ˙ R meet K W meet K Q ˙ Q ˙ R meet K W
77 75 fveq2d K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q G R = G P ˙ P ˙ R meet K W meet K Q ˙ Q ˙ R meet K W
78 68 76 77 3eqtr4d K HL W H F T G T R A P A ¬ P ˙ W Q A ¬ Q ˙ W P Q ¬ R ˙ P ˙ Q F P = G P F Q = G Q F R = G R