| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemd4.l |
|
| 2 |
|
cdlemd4.j |
|
| 3 |
|
cdlemd4.a |
|
| 4 |
|
cdlemd4.h |
|
| 5 |
|
cdlemd4.t |
|
| 6 |
|
simp11l |
|
| 7 |
|
simp11r |
|
| 8 |
|
simp21 |
|
| 9 |
|
simp22 |
|
| 10 |
|
simp231 |
|
| 11 |
1 2 3 4
|
cdlemb2 |
|
| 12 |
6 7 8 9 10 11
|
syl221anc |
|
| 13 |
|
simpl11 |
|
| 14 |
|
simpl12 |
|
| 15 |
|
simpl13 |
|
| 16 |
|
simpl21 |
|
| 17 |
|
simprl |
|
| 18 |
|
simprrl |
|
| 19 |
17 18
|
jca |
|
| 20 |
6
|
hllatd |
|
| 21 |
20
|
adantr |
|
| 22 |
|
eqid |
|
| 23 |
22 3
|
atbase |
|
| 24 |
23
|
ad2antrl |
|
| 25 |
|
simp21l |
|
| 26 |
22 3
|
atbase |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
adantr |
|
| 29 |
|
simp22l |
|
| 30 |
22 3
|
atbase |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
adantr |
|
| 33 |
|
simprrr |
|
| 34 |
22 1 2
|
latnlej1l |
|
| 35 |
34
|
necomd |
|
| 36 |
21 24 28 32 33 35
|
syl131anc |
|
| 37 |
|
simpl22 |
|
| 38 |
|
simpl23 |
|
| 39 |
1 2 3 4
|
cdlemd3 |
|
| 40 |
13 16 37 38 15 17 33 39
|
syl133anc |
|
| 41 |
36 40
|
jca |
|
| 42 |
|
simpl3l |
|
| 43 |
10
|
adantr |
|
| 44 |
43 33
|
jca |
|
| 45 |
|
simpl3 |
|
| 46 |
1 2 3 4 5
|
cdlemd2 |
|
| 47 |
13 14 17 16 37 44 45 46
|
syl331anc |
|
| 48 |
1 2 3 4 5
|
cdlemd2 |
|
| 49 |
13 14 15 16 19 41 42 47 48
|
syl332anc |
|
| 50 |
12 49
|
rexlimddv |
|