Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme21.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme21.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme21.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme21.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme21.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme21.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
cdleme21.f |
⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
8 |
|
cdleme21.b |
⊢ 𝐵 = ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme21.d |
⊢ 𝐷 = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) |
10 |
|
cdleme21.e |
⊢ 𝐸 = ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) |
11 |
|
cdleme21d.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ 𝐷 ) ) |
12 |
|
cdleme21d.z |
⊢ 𝑍 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐵 ∨ 𝐸 ) ) |
13 |
|
cdleme21.g |
⊢ 𝐺 = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ) ) |
14 |
|
cdleme21.y |
⊢ 𝑌 = ( ( 𝑅 ∨ 𝑇 ) ∧ 𝑊 ) |
15 |
|
cdleme21.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐺 ∨ 𝑌 ) ) |
16 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
18 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
19 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
20 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
21 |
|
simp231 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
22 |
|
simp232 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
23 |
|
simp32l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
24 |
22 23
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
25 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme21d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → 𝑁 = 𝑍 ) |
27 |
16 17 18 19 20 21 24 25 26
|
syl323anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → 𝑁 = 𝑍 ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
cdleme21e |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → 𝑂 = 𝑍 ) |
29 |
27 28
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) → 𝑁 = 𝑂 ) |