Metamath Proof Explorer


Theorem cdleme26eALTN

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 4th line on p. 115. F , N , O represent f(z), f_z(s), f_z(t) respectively. When t \/ v = p \/ q, f_z(s) <_ f_z(t) \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
cdleme26.l = ( le ‘ 𝐾 )
cdleme26.j = ( join ‘ 𝐾 )
cdleme26.m = ( meet ‘ 𝐾 )
cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme26eALT.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme26eALT.f 𝐹 = ( ( 𝑦 𝑈 ) ( 𝑄 ( ( 𝑃 𝑦 ) 𝑊 ) ) )
cdleme26eALT.g 𝐺 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
cdleme26eALT.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑆 𝑦 ) 𝑊 ) ) )
cdleme26eALT.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐺 ( ( 𝑇 𝑧 ) 𝑊 ) ) )
cdleme26eALT.i 𝐼 = ( 𝑢𝐵𝑦𝐴 ( ( ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
cdleme26eALT.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
Assertion cdleme26eALTN ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝐼 ( 𝐸 𝑉 ) )

Proof

Step Hyp Ref Expression
1 cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme26.l = ( le ‘ 𝐾 )
3 cdleme26.j = ( join ‘ 𝐾 )
4 cdleme26.m = ( meet ‘ 𝐾 )
5 cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme26eALT.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme26eALT.f 𝐹 = ( ( 𝑦 𝑈 ) ( 𝑄 ( ( 𝑃 𝑦 ) 𝑊 ) ) )
9 cdleme26eALT.g 𝐺 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
10 cdleme26eALT.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑆 𝑦 ) 𝑊 ) ) )
11 cdleme26eALT.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐺 ( ( 𝑇 𝑧 ) 𝑊 ) ) )
12 cdleme26eALT.i 𝐼 = ( 𝑢𝐵𝑦𝐴 ( ( ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
13 cdleme26eALT.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
14 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝐾 ∈ HL )
15 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝑊𝐻 )
16 simp231 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝑇𝐴 )
17 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
18 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
19 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝑃𝑄 )
20 simp221 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝑆𝐴 )
21 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) )
22 simp21 ( ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → 𝑦𝐴 )
23 22 3ad2ant3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝑦𝐴 )
24 simp322 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑦 𝑊 )
25 simp31 ( ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → 𝑧𝐴 )
26 25 3ad2ant3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝑧𝐴 )
27 simp332 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑧 𝑊 )
28 26 27 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) )
29 23 24 28 jca31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) )
30 2 3 4 5 6 7 8 9 10 11 cdleme22eALTN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑆𝐴 ∧ ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) ) → 𝑁 ( 𝑂 𝑉 ) )
31 14 15 16 17 18 19 20 21 29 30 syl333anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝑁 ( 𝑂 𝑉 ) )
32 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
33 simp222 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑆 𝑊 )
34 simp223 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝑆 ( 𝑃 𝑄 ) )
35 1 2 3 4 5 6 7 8 10 12 cdleme25cl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ) ) → 𝐼𝐵 )
36 32 17 18 20 33 19 34 35 syl322anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝐼𝐵 )
37 simp323 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑦 ( 𝑃 𝑄 ) )
38 1 fvexi 𝐵 ∈ V
39 38 12 riotasv ( ( 𝐼𝐵𝑦𝐴 ∧ ( ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ) → 𝐼 = 𝑁 )
40 36 23 24 37 39 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝐼 = 𝑁 )
41 simp232 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑇 𝑊 )
42 simp233 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝑇 ( 𝑃 𝑄 ) )
43 1 2 3 4 5 6 7 9 11 13 cdleme25cl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ) → 𝐸𝐵 )
44 32 17 18 16 41 19 42 43 syl322anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝐸𝐵 )
45 simp333 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑧 ( 𝑃 𝑄 ) )
46 38 13 riotasv ( ( 𝐸𝐵𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → 𝐸 = 𝑂 )
47 44 26 27 45 46 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝐸 = 𝑂 )
48 47 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → ( 𝐸 𝑉 ) = ( 𝑂 𝑉 ) )
49 31 40 48 3brtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) ) → 𝐼 ( 𝐸 𝑉 ) )