Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme32.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme32.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme32.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme32.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme32.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme32.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme32.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme32.c |
⊢ 𝐶 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme32.d |
⊢ 𝐷 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme32.e |
⊢ 𝐸 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑠 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
11 |
|
cdleme32.i |
⊢ 𝐼 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐸 ) ) |
12 |
|
cdleme32.n |
⊢ 𝑁 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , 𝐶 ) |
13 |
|
cdleme32.o |
⊢ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
14 |
|
cdleme32.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) ) |
15 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
|
simp21r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ 𝐵 ) |
17 |
|
simp23r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) → ¬ 𝑌 ≤ 𝑊 ) |
18 |
1 2 3 4 5 6
|
lhpmcvr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) → ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) |
19 |
15 16 17 18
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) → ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) |
20 |
|
nfv |
⊢ Ⅎ 𝑠 ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) |
21 |
|
nfcv |
⊢ Ⅎ 𝑠 𝐵 |
22 |
|
nfv |
⊢ Ⅎ 𝑠 ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) |
23 |
|
nfra1 |
⊢ Ⅎ 𝑠 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) |
24 |
23 21
|
nfriota |
⊢ Ⅎ 𝑠 ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
25 |
13 24
|
nfcxfr |
⊢ Ⅎ 𝑠 𝑂 |
26 |
|
nfcv |
⊢ Ⅎ 𝑠 𝑥 |
27 |
22 25 26
|
nfif |
⊢ Ⅎ 𝑠 if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) |
28 |
21 27
|
nfmpt |
⊢ Ⅎ 𝑠 ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) ) |
29 |
14 28
|
nfcxfr |
⊢ Ⅎ 𝑠 𝐹 |
30 |
|
nfcv |
⊢ Ⅎ 𝑠 𝑋 |
31 |
29 30
|
nffv |
⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑋 ) |
32 |
|
nfcv |
⊢ Ⅎ 𝑠 ≤ |
33 |
|
nfcv |
⊢ Ⅎ 𝑠 𝑌 |
34 |
29 33
|
nffv |
⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑌 ) |
35 |
31 32 34
|
nfbr |
⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) |
36 |
|
simpl1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
37 |
|
simpl2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ) |
38 |
|
simprl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) ) → 𝑠 ∈ 𝐴 ) |
39 |
|
simprrl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) ) → ¬ 𝑠 ≤ 𝑊 ) |
40 |
38 39
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) ) → ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) |
41 |
|
simprrr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) ) → ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) |
42 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) ) → 𝑋 ≤ 𝑌 ) |
43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
cdleme32e |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) |
44 |
36 37 40 41 42 43
|
syl113anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) ) ) → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) |
45 |
44
|
exp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑠 ∈ 𝐴 → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) ) |
46 |
20 35 45
|
rexlimd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) → ( ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) |
47 |
19 46
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) |