Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme41.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme41.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme41.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme41.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme41.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme41.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme41.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme41.d |
⊢ 𝐷 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme41.e |
⊢ 𝐸 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme41.g |
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑠 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
11 |
|
cdleme41.i |
⊢ 𝐼 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐺 ) ) |
12 |
|
cdleme41.n |
⊢ 𝑁 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , 𝐷 ) |
13 |
|
cdleme41.o |
⊢ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
14 |
|
cdleme41.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) ) |
15 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
16 |
|
nfv |
⊢ Ⅎ 𝑠 ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
17 |
|
nfcsb1v |
⊢ Ⅎ 𝑠 ⦋ 𝑅 / 𝑠 ⦌ 𝑁 |
18 |
|
nfcv |
⊢ Ⅎ 𝑠 ∨ |
19 |
|
nfcv |
⊢ Ⅎ 𝑠 ( 𝑋 ∧ 𝑊 ) |
20 |
17 18 19
|
nfov |
⊢ Ⅎ 𝑠 ( ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) |
21 |
20
|
a1i |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → Ⅎ 𝑠 ( ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
22 |
|
nfvd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → Ⅎ 𝑠 ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
23 |
|
eqid |
⊢ ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
24 |
13 14 23
|
cdleme31fv1 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
25 |
24
|
3ad2ant2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
26 |
|
breq1 |
⊢ ( 𝑠 = 𝑅 → ( 𝑠 ≤ 𝑊 ↔ 𝑅 ≤ 𝑊 ) ) |
27 |
26
|
notbid |
⊢ ( 𝑠 = 𝑅 → ( ¬ 𝑠 ≤ 𝑊 ↔ ¬ 𝑅 ≤ 𝑊 ) ) |
28 |
|
oveq1 |
⊢ ( 𝑠 = 𝑅 → ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
29 |
28
|
eqeq1d |
⊢ ( 𝑠 = 𝑅 → ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ↔ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
30 |
27 29
|
anbi12d |
⊢ ( 𝑠 = 𝑅 → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ↔ ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ 𝑠 = 𝑅 ) → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ↔ ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) |
32 |
|
csbeq1a |
⊢ ( 𝑠 = 𝑅 → 𝑁 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) |
33 |
32
|
oveq1d |
⊢ ( 𝑠 = 𝑅 → ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ 𝑠 = 𝑅 ) → ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
35 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
36 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
cdleme32fvcl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
38 |
35 36 37
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
39 |
|
simp3ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑅 ∈ 𝐴 ) |
40 |
|
simp3lr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑅 ≤ 𝑊 ) |
41 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
42 |
40 41
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
43 |
16 21 22 25 31 34 38 39 42
|
riotasv2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ 𝑋 ) = ( ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
44 |
15 43
|
mpan2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) = ( ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |