Metamath Proof Explorer


Theorem cdleme42b

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 6-Mar-2013)

Ref Expression
Hypotheses cdleme41.b 𝐵 = ( Base ‘ 𝐾 )
cdleme41.l = ( le ‘ 𝐾 )
cdleme41.j = ( join ‘ 𝐾 )
cdleme41.m = ( meet ‘ 𝐾 )
cdleme41.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme41.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme41.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme41.d 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme41.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme41.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdleme41.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
cdleme41.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
cdleme41.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
cdleme41.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
Assertion cdleme42b ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( 𝑅 / 𝑠 𝑁 ( 𝑋 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 cdleme41.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme41.l = ( le ‘ 𝐾 )
3 cdleme41.j = ( join ‘ 𝐾 )
4 cdleme41.m = ( meet ‘ 𝐾 )
5 cdleme41.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme41.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme41.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme41.d 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme41.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
10 cdleme41.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
11 cdleme41.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
12 cdleme41.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
13 cdleme41.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
14 cdleme41.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
15 1 fvexi 𝐵 ∈ V
16 nfv 𝑠 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) )
17 nfcsb1v 𝑠 𝑅 / 𝑠 𝑁
18 nfcv 𝑠
19 nfcv 𝑠 ( 𝑋 𝑊 )
20 17 18 19 nfov 𝑠 ( 𝑅 / 𝑠 𝑁 ( 𝑋 𝑊 ) )
21 20 a1i ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑠 ( 𝑅 / 𝑠 𝑁 ( 𝑋 𝑊 ) ) )
22 nfvd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → Ⅎ 𝑠 ( ¬ 𝑅 𝑊 ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) )
23 eqid ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) )
24 13 14 23 cdleme31fv1 ( ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) )
25 24 3ad2ant2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) )
26 breq1 ( 𝑠 = 𝑅 → ( 𝑠 𝑊𝑅 𝑊 ) )
27 26 notbid ( 𝑠 = 𝑅 → ( ¬ 𝑠 𝑊 ↔ ¬ 𝑅 𝑊 ) )
28 oveq1 ( 𝑠 = 𝑅 → ( 𝑠 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) )
29 28 eqeq1d ( 𝑠 = 𝑅 → ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ↔ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) )
30 27 29 anbi12d ( 𝑠 = 𝑅 → ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) ↔ ( ¬ 𝑅 𝑊 ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) )
31 30 adantl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑠 = 𝑅 ) → ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) ↔ ( ¬ 𝑅 𝑊 ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) )
32 csbeq1a ( 𝑠 = 𝑅𝑁 = 𝑅 / 𝑠 𝑁 )
33 32 oveq1d ( 𝑠 = 𝑅 → ( 𝑁 ( 𝑋 𝑊 ) ) = ( 𝑅 / 𝑠 𝑁 ( 𝑋 𝑊 ) ) )
34 33 adantl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑠 = 𝑅 ) → ( 𝑁 ( 𝑋 𝑊 ) ) = ( 𝑅 / 𝑠 𝑁 ( 𝑋 𝑊 ) ) )
35 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
36 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑋𝐵 )
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fvcl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝐵 )
38 35 36 37 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) ∈ 𝐵 )
39 simp3ll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑅𝐴 )
40 simp3lr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑅 𝑊 )
41 simp3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 )
42 40 41 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ¬ 𝑅 𝑊 ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) )
43 16 21 22 25 31 34 38 39 42 riotasv2d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝐵 ∈ V ) → ( 𝐹𝑋 ) = ( 𝑅 / 𝑠 𝑁 ( 𝑋 𝑊 ) ) )
44 15 43 mpan2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( 𝑅 / 𝑠 𝑁 ( 𝑋 𝑊 ) ) )