Metamath Proof Explorer


Theorem cdlemg16zz

Description: Eliminate P =/= Q from cdlemg16z . TODO: Use this only if needed. (Contributed by NM, 26-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg16zz ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 id ( 𝑃 = 𝑄𝑃 = 𝑄 )
9 2fveq3 ( 𝑃 = 𝑄 → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = ( 𝐹 ‘ ( 𝐺𝑄 ) ) )
10 8 9 oveq12d ( 𝑃 = 𝑄 → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) )
11 10 oveq1d ( 𝑃 = 𝑄 → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
12 11 adantl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
13 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) ∧ 𝑃𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simpl21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) ∧ 𝑃𝑄 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
15 simpl22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) ∧ 𝑃𝑄 ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
16 simpl23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) ∧ 𝑃𝑄 ) → 𝐹𝑇 )
17 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) ∧ 𝑃𝑄 ) → 𝐺𝑇 )
18 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) ∧ 𝑃𝑄 ) → 𝑃𝑄 )
19 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) ∧ 𝑃𝑄 ) → ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) )
20 simpl33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) ∧ 𝑃𝑄 ) → ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) )
21 1 2 3 4 5 6 7 cdlemg16z ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
22 13 14 15 16 17 18 19 20 21 syl332anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) ∧ 𝑃𝑄 ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
23 12 22 pm2.61dane ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )