Metamath Proof Explorer


Theorem cdlemg1ci2

Description: Any function of the form of the function constructed for cdleme is a translation. TODO: Fix comment. (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypotheses cdlemg1c.l = ( le ‘ 𝐾 )
cdlemg1c.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg1c.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg1c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg1ci2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ) → 𝐹𝑇 )

Proof

Step Hyp Ref Expression
1 cdlemg1c.l = ( le ‘ 𝐾 )
2 cdlemg1c.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg1c.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg1c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ) → 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) )
6 eqid ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
7 1 2 3 4 6 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ∈ 𝑇 )
8 7 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ) → ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ∈ 𝑇 )
9 5 8 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ) → 𝐹𝑇 )