| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg1c.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdlemg1c.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
cdlemg1c.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
cdlemg1c.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) ) → 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) ) |
| 6 |
|
eqid |
⊢ ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) |
| 7 |
1 2 3 4 6
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) ∈ 𝑇 ) |
| 8 |
7
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) ) → ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) ∈ 𝑇 ) |
| 9 |
5 8
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) ) → 𝐹 ∈ 𝑇 ) |