Metamath Proof Explorer


Theorem cdlemg1cN

Description: Any translation belongs to the set of functions constructed for cdleme . TODO: Fix comment. (Contributed by NM, 18-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg1c.l = ( le ‘ 𝐾 )
cdlemg1c.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg1c.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg1c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg1cN ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → ( 𝐹𝑇𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg1c.l = ( le ‘ 𝐾 )
2 cdlemg1c.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg1c.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg1c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 simpll1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) ∧ 𝐹𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 simpll2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) ∧ 𝐹𝑇 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
7 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) ∧ 𝐹𝑇 ) → 𝐹𝑇 )
8 1 2 3 4 cdlemeiota ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐹𝑇 ) → 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = ( 𝐹𝑃 ) ) )
9 5 6 7 8 syl3anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) ∧ 𝐹𝑇 ) → 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = ( 𝐹𝑃 ) ) )
10 simplr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) ∧ 𝐹𝑇 ) → ( 𝐹𝑃 ) = 𝑄 )
11 10 eqeq2d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) ∧ 𝐹𝑇 ) → ( ( 𝑓𝑃 ) = ( 𝐹𝑃 ) ↔ ( 𝑓𝑃 ) = 𝑄 ) )
12 11 riotabidv ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) ∧ 𝐹𝑇 ) → ( 𝑓𝑇 ( 𝑓𝑃 ) = ( 𝐹𝑃 ) ) = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) )
13 9 12 eqtrd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) ∧ 𝐹𝑇 ) → 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) )
14 1 2 3 4 cdlemg1ci2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ) → 𝐹𝑇 )
15 14 adantlr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) ∧ 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ) → 𝐹𝑇 )
16 13 15 impbida ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → ( 𝐹𝑇𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ) )