Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg1c.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg1c.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
cdlemg1c.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
cdlemg1c.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
1 2 3 4
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑝 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑝 ) ≤ 𝑊 ) ) |
6 |
5
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑝 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑝 ) ≤ 𝑊 ) ) |
7 |
6
|
simpld |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑝 ) ∈ 𝐴 ) |
8 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ¬ 𝑝 ≤ 𝑊 ) |
9 |
6
|
simprd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ¬ ( 𝐹 ‘ 𝑝 ) ≤ 𝑊 ) |
10 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) |
12 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
13 |
1 2 3 4
|
cdlemeiota |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) ) |
14 |
10 11 12 13
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) ) |
15 |
|
breq1 |
⊢ ( 𝑞 = ( 𝐹 ‘ 𝑝 ) → ( 𝑞 ≤ 𝑊 ↔ ( 𝐹 ‘ 𝑝 ) ≤ 𝑊 ) ) |
16 |
15
|
notbid |
⊢ ( 𝑞 = ( 𝐹 ‘ 𝑝 ) → ( ¬ 𝑞 ≤ 𝑊 ↔ ¬ ( 𝐹 ‘ 𝑝 ) ≤ 𝑊 ) ) |
17 |
|
eqeq2 |
⊢ ( 𝑞 = ( 𝐹 ‘ 𝑝 ) → ( ( 𝑓 ‘ 𝑝 ) = 𝑞 ↔ ( 𝑓 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) ) |
18 |
17
|
riotabidv |
⊢ ( 𝑞 = ( 𝐹 ‘ 𝑝 ) → ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑞 = ( 𝐹 ‘ 𝑝 ) → ( 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ↔ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) ) ) |
20 |
16 19
|
3anbi23d |
⊢ ( 𝑞 = ( 𝐹 ‘ 𝑝 ) → ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ↔ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ ( 𝐹 ‘ 𝑝 ) ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
21 |
20
|
rspcev |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ ( 𝐹 ‘ 𝑝 ) ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) ) ) → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) |
22 |
7 8 9 14 21
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) |
23 |
1 2 3
|
lhpexnle |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ≤ 𝑊 ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ≤ 𝑊 ) |
25 |
22 24
|
reximddv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) |
26 |
25
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ∈ 𝑇 → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) ) |
27 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
28 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) → 𝑝 ∈ 𝐴 ) |
29 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) → ¬ 𝑝 ≤ 𝑊 ) |
30 |
28 29
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) → ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) |
31 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) → 𝑞 ∈ 𝐴 ) |
32 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) → ¬ 𝑞 ≤ 𝑊 ) |
33 |
31 32
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) → ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) |
34 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) → 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) |
35 |
1 2 3 4
|
cdlemg1ci2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → 𝐹 ∈ 𝑇 ) |
36 |
27 30 33 34 35
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) → 𝐹 ∈ 𝑇 ) |
37 |
36
|
3exp |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) → ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → 𝐹 ∈ 𝑇 ) ) ) |
38 |
37
|
rexlimdvv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → 𝐹 ∈ 𝑇 ) ) |
39 |
26 38
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ∈ 𝑇 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) ) ) |