Metamath Proof Explorer


Theorem cdlemg1cex

Description: Any translation is one of our F s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf ? (Contributed by NM, 17-Apr-2013)

Ref Expression
Hypotheses cdlemg1c.l ˙ = K
cdlemg1c.a A = Atoms K
cdlemg1c.h H = LHyp K
cdlemg1c.t T = LTrn K W
Assertion cdlemg1cex K HL W H F T p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q

Proof

Step Hyp Ref Expression
1 cdlemg1c.l ˙ = K
2 cdlemg1c.a A = Atoms K
3 cdlemg1c.h H = LHyp K
4 cdlemg1c.t T = LTrn K W
5 1 2 3 4 ltrnel K HL W H F T p A ¬ p ˙ W F p A ¬ F p ˙ W
6 5 3expa K HL W H F T p A ¬ p ˙ W F p A ¬ F p ˙ W
7 6 simpld K HL W H F T p A ¬ p ˙ W F p A
8 simprr K HL W H F T p A ¬ p ˙ W ¬ p ˙ W
9 6 simprd K HL W H F T p A ¬ p ˙ W ¬ F p ˙ W
10 simpll K HL W H F T p A ¬ p ˙ W K HL W H
11 simpr K HL W H F T p A ¬ p ˙ W p A ¬ p ˙ W
12 simplr K HL W H F T p A ¬ p ˙ W F T
13 1 2 3 4 cdlemeiota K HL W H p A ¬ p ˙ W F T F = ι f T | f p = F p
14 10 11 12 13 syl3anc K HL W H F T p A ¬ p ˙ W F = ι f T | f p = F p
15 breq1 q = F p q ˙ W F p ˙ W
16 15 notbid q = F p ¬ q ˙ W ¬ F p ˙ W
17 eqeq2 q = F p f p = q f p = F p
18 17 riotabidv q = F p ι f T | f p = q = ι f T | f p = F p
19 18 eqeq2d q = F p F = ι f T | f p = q F = ι f T | f p = F p
20 16 19 3anbi23d q = F p ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q ¬ p ˙ W ¬ F p ˙ W F = ι f T | f p = F p
21 20 rspcev F p A ¬ p ˙ W ¬ F p ˙ W F = ι f T | f p = F p q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q
22 7 8 9 14 21 syl13anc K HL W H F T p A ¬ p ˙ W q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q
23 1 2 3 lhpexnle K HL W H p A ¬ p ˙ W
24 23 adantr K HL W H F T p A ¬ p ˙ W
25 22 24 reximddv K HL W H F T p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q
26 25 ex K HL W H F T p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q
27 simp1 K HL W H p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q K HL W H
28 simp2l K HL W H p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q p A
29 simp31 K HL W H p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q ¬ p ˙ W
30 28 29 jca K HL W H p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q p A ¬ p ˙ W
31 simp2r K HL W H p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q q A
32 simp32 K HL W H p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q ¬ q ˙ W
33 31 32 jca K HL W H p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q q A ¬ q ˙ W
34 simp33 K HL W H p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q F = ι f T | f p = q
35 1 2 3 4 cdlemg1ci2 K HL W H p A ¬ p ˙ W q A ¬ q ˙ W F = ι f T | f p = q F T
36 27 30 33 34 35 syl31anc K HL W H p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q F T
37 36 3exp K HL W H p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q F T
38 37 rexlimdvv K HL W H p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q F T
39 26 38 impbid K HL W H F T p A q A ¬ p ˙ W ¬ q ˙ W F = ι f T | f p = q