| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg4.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg4.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg4.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg4.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | cdlemg4.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | cdlemg4.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 7 |  | cdlemg4b.v | ⊢ 𝑉  =  ( 𝑅 ‘ 𝐺 ) | 
						
							| 8 |  | simp1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | simp21 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 10 |  | simp22 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 11 |  | simp31 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 12 |  | simp32 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 | cdlemg4c | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐺  ∈  𝑇 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 ) )  →  ¬  ( 𝐺 ‘ 𝑄 )  ≤  ( 𝑃  ∨  𝑉 ) ) | 
						
							| 14 | 8 9 10 11 12 13 | syl131anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ¬  ( 𝐺 ‘ 𝑄 )  ≤  ( 𝑃  ∨  𝑉 ) ) | 
						
							| 15 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  𝐾  ∈  HL ) | 
						
							| 16 |  | simp21l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 17 | 1 2 3 4 | ltrnel | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝐺 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 19 | 8 11 9 18 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝐺 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 20 | 6 2 | hlatjcom | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑃 )  ∈  𝐴 )  →  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑃 ) ) | 
						
							| 21 | 15 16 19 20 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑃 ) ) | 
						
							| 22 | 1 2 3 4 5 6 7 | cdlemg4b1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝐺  ∈  𝑇 )  →  ( 𝑃  ∨  𝑉 )  =  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) ) ) | 
						
							| 23 | 8 9 11 22 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝑃  ∨  𝑉 )  =  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) ) ) | 
						
							| 24 |  | simp33 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑃 ) ) | 
						
							| 26 | 21 23 25 | 3eqtr4rd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  =  ( 𝑃  ∨  𝑉 ) ) | 
						
							| 27 | 26 | breq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( ( 𝐺 ‘ 𝑄 )  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ↔  ( 𝐺 ‘ 𝑄 )  ≤  ( 𝑃  ∨  𝑉 ) ) ) | 
						
							| 28 | 14 27 | mtbird | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ¬  ( 𝐺 ‘ 𝑄 )  ≤  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |