Metamath Proof Explorer


Theorem cdlemg4d

Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l ˙=K
cdlemg4.a A=AtomsK
cdlemg4.h H=LHypK
cdlemg4.t T=LTrnKW
cdlemg4.r R=trLKW
cdlemg4.j ˙=joinK
cdlemg4b.v V=RG
Assertion cdlemg4d KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=P¬GQ˙GP˙FGP

Proof

Step Hyp Ref Expression
1 cdlemg4.l ˙=K
2 cdlemg4.a A=AtomsK
3 cdlemg4.h H=LHypK
4 cdlemg4.t T=LTrnKW
5 cdlemg4.r R=trLKW
6 cdlemg4.j ˙=joinK
7 cdlemg4b.v V=RG
8 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PKHLWH
9 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PPA¬P˙W
10 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PQA¬Q˙W
11 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PGT
12 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=P¬Q˙P˙V
13 1 2 3 4 5 6 7 cdlemg4c KHLWHPA¬P˙WQA¬Q˙WGT¬Q˙P˙V¬GQ˙P˙V
14 8 9 10 11 12 13 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=P¬GQ˙P˙V
15 simp1l KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PKHL
16 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PPA
17 1 2 3 4 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
18 17 simpld KHLWHGTPA¬P˙WGPA
19 8 11 9 18 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PGPA
20 6 2 hlatjcom KHLPAGPAP˙GP=GP˙P
21 15 16 19 20 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PP˙GP=GP˙P
22 1 2 3 4 5 6 7 cdlemg4b1 KHLWHPA¬P˙WGTP˙V=P˙GP
23 8 9 11 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PP˙V=P˙GP
24 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PFGP=P
25 24 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PGP˙FGP=GP˙P
26 21 23 25 3eqtr4rd KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PGP˙FGP=P˙V
27 26 breq2d KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PGQ˙GP˙FGPGQ˙P˙V
28 14 27 mtbird KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=P¬GQ˙GP˙FGP