Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg4.l |
|
2 |
|
cdlemg4.a |
|
3 |
|
cdlemg4.h |
|
4 |
|
cdlemg4.t |
|
5 |
|
cdlemg4.r |
|
6 |
|
cdlemg4.j |
|
7 |
|
cdlemg4b.v |
|
8 |
|
simpll |
|
9 |
|
simplr2 |
|
10 |
|
simplr3 |
|
11 |
1 2 3 4 5 6 7
|
cdlemg4b2 |
|
12 |
8 9 10 11
|
syl3anc |
|
13 |
|
simpr |
|
14 |
|
simpll |
|
15 |
14
|
hllatd |
|
16 |
|
simpr1l |
|
17 |
|
eqid |
|
18 |
17 2
|
atbase |
|
19 |
16 18
|
syl |
|
20 |
|
simpl |
|
21 |
|
simpr3 |
|
22 |
17 3 4 5
|
trlcl |
|
23 |
20 21 22
|
syl2anc |
|
24 |
7 23
|
eqeltrid |
|
25 |
17 1 6
|
latlej2 |
|
26 |
15 19 24 25
|
syl3anc |
|
27 |
26
|
adantr |
|
28 |
|
simpr2l |
|
29 |
17 2
|
atbase |
|
30 |
28 29
|
syl |
|
31 |
17 3 4
|
ltrncl |
|
32 |
20 21 30 31
|
syl3anc |
|
33 |
17 6
|
latjcl |
|
34 |
15 19 24 33
|
syl3anc |
|
35 |
17 1 6
|
latjle12 |
|
36 |
15 32 24 34 35
|
syl13anc |
|
37 |
36
|
adantr |
|
38 |
13 27 37
|
mpbi2and |
|
39 |
12 38
|
eqbrtrrd |
|
40 |
15
|
adantr |
|
41 |
30
|
adantr |
|
42 |
32
|
adantr |
|
43 |
19
|
adantr |
|
44 |
8 10 22
|
syl2anc |
|
45 |
7 44
|
eqeltrid |
|
46 |
40 43 45 33
|
syl3anc |
|
47 |
17 1 6
|
latjle12 |
|
48 |
40 41 42 46 47
|
syl13anc |
|
49 |
39 48
|
mpbird |
|
50 |
49
|
simpld |
|
51 |
50
|
ex |
|
52 |
51
|
con3d |
|
53 |
52
|
3impia |
|