Metamath Proof Explorer


Theorem cdlemg4b2

Description: TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l ˙=K
cdlemg4.a A=AtomsK
cdlemg4.h H=LHypK
cdlemg4.t T=LTrnKW
cdlemg4.r R=trLKW
cdlemg4.j ˙=joinK
cdlemg4b.v V=RG
Assertion cdlemg4b2 KHLWHPA¬P˙WGTGP˙V=P˙GP

Proof

Step Hyp Ref Expression
1 cdlemg4.l ˙=K
2 cdlemg4.a A=AtomsK
3 cdlemg4.h H=LHypK
4 cdlemg4.t T=LTrnKW
5 cdlemg4.r R=trLKW
6 cdlemg4.j ˙=joinK
7 cdlemg4b.v V=RG
8 eqid meetK=meetK
9 1 6 8 2 3 4 5 trlval2 KHLWHGTPA¬P˙WRG=P˙GPmeetKW
10 9 3com23 KHLWHPA¬P˙WGTRG=P˙GPmeetKW
11 7 10 eqtrid KHLWHPA¬P˙WGTV=P˙GPmeetKW
12 11 oveq2d KHLWHPA¬P˙WGTGP˙V=GP˙P˙GPmeetKW
13 simp1 KHLWHPA¬P˙WGTKHLWH
14 simp2l KHLWHPA¬P˙WGTPA
15 1 2 3 4 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
16 15 3com23 KHLWHPA¬P˙WGTGPA¬GP˙W
17 eqid P˙GPmeetKW=P˙GPmeetKW
18 1 6 8 2 3 17 cdleme0cq KHLWHPAGPA¬GP˙WGP˙P˙GPmeetKW=P˙GP
19 13 14 16 18 syl12anc KHLWHPA¬P˙WGTGP˙P˙GPmeetKW=P˙GP
20 12 19 eqtrd KHLWHPA¬P˙WGTGP˙V=P˙GP