Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemj.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemj.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
cdlemj.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
cdlemj.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
cdlemj.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
simpl1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ) |
7 |
|
simpl2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) |
8 |
|
simpl3l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ) |
9 |
|
simpl3r |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) |
10 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) |
11 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
12 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
13 |
1 2 3 4 5 11 12
|
cdlemj1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) ) → ( ( 𝑈 ‘ ℎ ) ‘ 𝑝 ) = ( ( 𝑉 ‘ ℎ ) ‘ 𝑝 ) ) |
14 |
6 7 8 9 10 13
|
syl113anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑈 ‘ ℎ ) ‘ 𝑝 ) = ( ( 𝑉 ‘ ℎ ) ‘ 𝑝 ) ) |
15 |
14
|
exp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 → ( ( 𝑈 ‘ ℎ ) ‘ 𝑝 ) = ( ( 𝑉 ‘ ℎ ) ‘ 𝑝 ) ) ) ) |
16 |
15
|
ralrimiv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) → ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 → ( ( 𝑈 ‘ ℎ ) ‘ 𝑝 ) = ( ( 𝑉 ‘ ℎ ) ‘ 𝑝 ) ) ) |
17 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
18 |
|
simp121 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) → 𝑈 ∈ 𝐸 ) |
19 |
|
simp133 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) → ℎ ∈ 𝑇 ) |
20 |
2 3 5
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ ℎ ∈ 𝑇 ) → ( 𝑈 ‘ ℎ ) ∈ 𝑇 ) |
21 |
17 18 19 20
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) → ( 𝑈 ‘ ℎ ) ∈ 𝑇 ) |
22 |
|
simp122 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) → 𝑉 ∈ 𝐸 ) |
23 |
2 3 5
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑉 ∈ 𝐸 ∧ ℎ ∈ 𝑇 ) → ( 𝑉 ‘ ℎ ) ∈ 𝑇 ) |
24 |
17 22 19 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) → ( 𝑉 ‘ ℎ ) ∈ 𝑇 ) |
25 |
11 12 2 3
|
ltrneq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ‘ ℎ ) ∈ 𝑇 ∧ ( 𝑉 ‘ ℎ ) ∈ 𝑇 ) → ( ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 → ( ( 𝑈 ‘ ℎ ) ‘ 𝑝 ) = ( ( 𝑉 ‘ ℎ ) ‘ 𝑝 ) ) ↔ ( 𝑈 ‘ ℎ ) = ( 𝑉 ‘ ℎ ) ) ) |
26 |
17 21 24 25
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) → ( ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 → ( ( 𝑈 ‘ ℎ ) ‘ 𝑝 ) = ( ( 𝑉 ‘ ℎ ) ‘ 𝑝 ) ) ↔ ( 𝑈 ‘ ℎ ) = ( 𝑉 ‘ ℎ ) ) ) |
27 |
16 26
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝑈 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ∈ 𝑇 ) ) ∧ ( ℎ ≠ ( I ↾ 𝐵 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝑔 ) ∧ ( 𝑅 ‘ 𝑔 ) ≠ ( 𝑅 ‘ ℎ ) ) ) → ( 𝑈 ‘ ℎ ) = ( 𝑉 ‘ ℎ ) ) |